NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

Overview

NAS-HPO-Bench-II API

Overview

NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

It helps

  • a fair and low-cost evaluation/comparison of joint optimization (NAS+HPO) methods
  • a detailed analysis of the relationship between architecture/training HPs and performances

Our experimental analysis supports the importance of joint optimization. Please see our paper for details.

This repo provides API for NAS-HPO-Bench-II to make benchmarking easy. You can query our data when evaluating models in the search process of AutoML methods instead of training the models at a high cost.

If you use the dataset, please cite:

@InProceedings{hirose2021bench,
  title={{NAS-HPO-Bench-II}: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters},
  author={Hirose, Yoichi and Yoshinari, Nozomu and Shirakawa,  Shinichi},
  booktitle={Proceedings of the 13th Asian Conference on Machine Learning},
  year={2021}
}

The code for training models is here.

Dataset Overview

The total size of the search space is 192K. The dataset includes

  • the exact data of all the models in the search space for 12 epoch training
  • the surrogate data predicting accuracies after 200 epoch training

Architecture Search Space

The overall CNN architecture is constructed by stacking cells represented as a directed acyclic graph (DAG). Each edge in the graph indicates one of the four operations.

  • 3x3 convolution (ReLU activation, 3x3 convolution with stride 1, then batch normalization)
  • 3x3 average pooling with stride 1
  • Skip, which outputs the input tensor
  • Zero, which outputs the zero tensor with the same dimension as the input

It is based on NAS-Bench-201 and the only difference is that we exclude the 1x1 convolution operation from the options.

Training HP Search Space

The combination of eight initial learning rates and six batch sizes are used.

Hyperparameter Options
Batch Size 16, 32, 64, 128, 256, 512
Learning Rate 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4

Installation

Run

pip install nashpobench2api

, and download the API dataset from Google Drive (93.7MB), then put the data in some directory (default: ./data). This API supports python >= 3.6 (and no external library dependencies).

If you want to run the codes in bench_algos, run pip install -r requirements.txt.

Getting Started

Create an API instance to get access to the dataset.

from nashpobench2api import NASHPOBench2API as API
api = API('/path/to/dataset')

You can get 12-epoch valid accuracy (%) and train+valid training cost (sec.) of the specified configuration.

acc, cost = api.query_by_key(
	cellcode='0|10|210',
	batch_size=256,
	lr=0.1 )

Here, cellcode represents one of the architectures in the search space. As shown in the figure below, the numbers in the cellcode mean the type of operations, and the position of the numbers shows the edge '(A) | (B)(C) | (D)(E)(F)'.

In the querying process, the api instance remembers and shows the log (what you have queried). You can reduce the log if set verbose=False when initializing api.

When the querying process has finished, you can get the test accuracy of the configuration with the best valid accuracy in the queried configurations.

results = api.get_results()

results is a dictionary with the keys below.

Key Explanation
acc_trans a transition of valid accuracies api have queried
key_trans a transition of keys (=cellcode, lr, batch_size) api have queried
best_acc_trans a transition of the best valid accuracies (%) api have queried
best_key_trans a transition of the best keys (=cellcode, lr, batch_size) api have queried
total_cost_trans a transition of train+valid costs (sec.)
final_accs 12-epoch and 200-epoch test accuracies (%) of the key with the best valid accuracy api have queried

You can reset what api have remebered, which is useful when multiple runs.

api.reset_log_data()

The examples of benchmarking codes are in the bench_algos directory. Especially, random_search.py is the simplest code and easy to understand (the core part is random_search()).

Work in Progress

  • Upload the dataset as DataFrame for visualization/analysis.
  • Upload codes for a surrogate model.
  • Upload the trained models.
Owner
yoichi hirose
yoichi hirose
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
AI Toolkit for Healthcare Imaging

Medical Open Network for AI MONAI is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its am

Project MONAI 3.7k Jan 07, 2023
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022