Plotting points that lie on the intersection of the given curves using gradient descent.

Overview

Plotting intersection of curves using gradient descent

Webapp Link ---> Streamlit App

What's the app about Why this app
Plotting functions and their intersection. An interesting application of gradient descent.
I'm a fan of plotting graphs (and visualizations in general).

Let's say you are giving equations of curves and you need to plot the intersection of these curves. As an example, say you have 2 spheres (3D), how would you plot the intersection of the given spheres?

... x, a & b are vectors of size 3.

My first approach to this problem was finding the equation of intersection of these 2 functions by equating them i.e. F_1(x) = F_2(x). Then trying to simplify the equation and use that equation to plot the points. This approach is not feasible for 2 reasons:

  1. Equating the 2 functions won't necessarily give you the equation of intersection. For instance, equating 2 equations of spheres will give you intersection plane of the spheres and not the equation of intersecting circle (if any).
  2. Even if you had an equation, the question still remains, how to plot points from a given equation?

If you observe, points that lie on the intersection of the curves should satisfy all the functions separately i.e.

So, another approach (highly ineffective) would be to generate points randomly everytime and see if they satisfy all the given equations. If it does, it is a valid 'point'. Else, generate another random point and repeat untill you have sufficient points. Downsides of this approach:

  1. The search space is too big. Even bigger for N-dimensional points.
  2. Highly ineffective approach. Might take forever to stumble upon such valid points.

Gradient Descent to the rescue

Can we modify the previous approach- Instead of discarding an invalid randomly generated point, can we update it iteratively so that it approaches a valid solution? If so, what would it mean to be a valid solution and when should we stop updating the sample?

What should be the criteria for a point x to be a valid solution?

If the point lies on the intersection of the curves, it should satisfy for all i i.e.

; &

We can define a function as the summation of the given functions to hold the above condition.

So, we can say that a point will be valid when it satisfies G(x) = 0, since it will only hold when all the F_i(x) are zero. This will be our criterion for checking if the point is a valid solution.

However, we are not yet done. The range of G(x) can be from . This means, the minimum value of G(x) is not necessarily 0. This is a problem because if we keep minimizing G(x) iteratively by updating x, the value of G(x) will cross 0 and approach a negative value (it's minima).

This could be solved if the minima of G(x) is 0 itself. This way we can keep updating x until G(x) approaches the minima (0 in this case). So, we need to do slight modification in G(x) such that its minimum value is 0.

My first instict was to define G(x) as the sum of absolute F_i(x) i.e.

The minimum value of this function will be 0 and will hold all the conditions discussed above. However, if we are trying to use Gradient Descent, using modulus operation can be problematic because the function may not remain smooth anymore.

So, what's an easy alternative for modulus operator which also holds the smoothness property? - Use squares!

This function can now be minimised to get the points of intersection of the curves.

  1. The function will be smooth and continuos. Provided F(x) are themselves smooth and continuous.
  2. The minimum value of G(x) is zero.
  3. The minimum value of G(x) represents the interesection of all F_i(x)
 Generate a random point x
 While G(x) != 0:
    x = x - lr * gradient(G(x))
    
 Repeat for N points.


Assumptions:

  1. Curves do intersect somewhere.
  2. The individual curves are themselves differentiable.
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022