This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

Overview

Hybrid-Self-Attention-NEAT

Abstract

This repository contains the code to reproduce the results presented in the original paper.
In this article, we present a “Hybrid Self-Attention NEAT” method to improve the original NeuroEvolution of Augmenting Topologies (NEAT) algorithm in high-dimensional inputs. Although the NEAT algorithm has shown a significant result in different challenging tasks, as input representations are high dimensional, it cannot create a well-tuned network. Our study addresses this limitation by using self-attention as an indirect encoding method to select the most important parts of the input. In addition, we improve its overall performance with the help of a hybrid method to evolve the final network weights. The main conclusion is that Hybrid Self-Attention NEAT can eliminate the restriction of the original NEAT. The results indicate that in comparison with evolutionary algorithms, our model can get comparable scores in Atari games with raw pixels input with a much lower number of parameters.

NOTE: The original implementation of self-attention for atari-games, and the NEAT algorithm can be found here:
Neuroevolution of Self-Interpretable Agents: https://github.com/google/brain-tokyo-workshop/tree/master/AttentionAgent
Pure python library for the NEAT and other variations: https://github.com/ukuleleplayer/pureples

Execution

To use this work on your researches or projects you need:

  • Python 3.7
  • Python packages listed in requirements.txt

NOTE: The following commands are based on Ubuntu 20.04

To install Python:

First, check if you already have it installed or not.

python3 --version

If you don't have python 3.7 in your computer you can use the code below:

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get update
sudo apt-get install python3.7
sudo apt install python3.7-distutils

To install packages via pip install:

python3.7 -m pip install -r requirements.txt

To run this project on Ubuntu server:

You need to uncomment the following lines in experiments/configs/configs.py

_display = pyvirtualdisplay.Display(visible=False, size=(1400, 900))
_display.start()

And also install some system dependencies as well

apt-get install -y xvfb x11-utils

To train the model:

  • First, check the configuration you need. The default ones are listed in experiments/configs/.
  • We highly recommend increasing the number of population size, and the number of iterations to get better results.
  • Check the working directory to be: ~/Hybrid_Self_Attention_NEAT/
  • Run the runner.py as below:
python3.7 -m experiment.runner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.runner; done

   

To tune the model:

  • First, check you trained the model, and the model successfully saved in experiments/ as main_model.pkl
  • Run the tunner.py as below:
python3.7 -m experiment.tunner

NOTE: If you have limited resources (like RAM), you should decrease the number of iterations and instead use loops command

for i in {1..
   
    }; do python3.7 -m experiment.tunner; done

   

Citation

For attribution in academic contexts, please cite this work as:

@misc{khamesian2021hybrid,
    title           = {Hybrid Self-Attention NEAT: A novel evolutionary approach to improve the NEAT algorithm}, 
    author          = {Saman Khamesian and Hamed Malek},
    year            = {2021},
    eprint          = {2112.03670},
    archivePrefix   = {arXiv},
    primaryClass    = {cs.NE}
}
Owner
Saman Khamesian
Data Science Specialist at Mofid Securities
Saman Khamesian
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022