Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Related tags

Deep LearningSPPR
Overview

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning

This is the implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning" (accepted to CVPR2021).

For more information, check out the paper on [arXiv].

Requirements

  • Python 3.8
  • PyTorch 1.8.1 (>1.1.0)
  • cuda 11.2

Preparing Few-Shot Class-Incremental Learning Datasets

Download following datasets:

1. CIFAR-100

Automatically downloaded on torchvision.

2. MiniImageNet

(1) Download MiniImageNet train/test images[github], and prepare related datasets according to [TOPIC].

(2) or Download processed data from our Google Drive: [mini-imagenet.zip], (and locate the entire folder under datasets/ directory).

3. CUB200

(1) Download CUB200 train/test images, and prepare related datasets according to [TOPIC]:

wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz

(2) or Download processed data from our Google Drive: [cub.zip], (and locate the entire folder under datasets/ directory).

Create a directory '../datasets' for the above three datasets and appropriately place each dataset to have following directory structure:

../                                                        # parent directory
├── ./                                           # current (project) directory
│   ├── log/                              # (dir.) running log
│   ├── pre/                              # (dir.) trained models for test.
│   ├── utils/                            # (dir.) implementation of paper 
│   ├── README.md                          # intstruction for reproduction
│   ├── test.sh                          # bash for testing.
│   ├── train.py                        # code for training model
│   └── train.sh                        # bash for training model
└── datasets/
    ├── CIFAR100/                      # CIFAR100 devkit
    ├── mini-imagenet/           
    │   ├── train/                         # (dir.) training images (from Google Drive)
    │   ├── test/                           # (dir.) testing images (from Google Drive)
    │   └── ..some csv files..
    └── cub/                                   # (dir.) contains 200 object classes
        ├── train/                             # (dir.) training images (from Google Drive)
        └── test/                               # (dir.) testing images (from Google Drive)

Training

Choose apporopriate lines in train.sh file.

sh train.sh
  • '--base_epochs' can be modified to control the initial accuracy ('Our' vs 'Our*' in our paper).
  • Training takes approx. several hours until convergence (trained with one 2080 Ti or 3090 GPUs).

Testing

1. Download pretrained models to the 'pre' folder.

Pretrained models are available on our [Google Drive].

2. Test

Choose apporopriate lines in train.sh file.

sh test.sh 

Main Results

The experimental results with 'test.sh 'for three datasets are shown below.

1. CIFAR-100

Model 1 2 3 4 5 6 7 8 9
iCaRL 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
TOPIC 64.10 56.03 47.89 42.99 38.02 34.60 31.67 28.35 25.86
Ours 63.97 65.86 61.31 57.6 53.39 50.93 48.27 45.36 43.32

2. MiniImageNet

Model 1 2 3 4 5 6 7 8 9
iCaRL 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC 61.31 45.58 43.77 37.19 32.38 29.67 26.44 25.18 21.80
Ours 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92

3. CUB200

Model 1 2 3 4 5 6 7 8 9 10 11
iCaRL 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC 68.68 61.01 55.35 50.01 42.42 39.07 35.47 32.87 30.04 25.91 24.85
Ours 68.05 62.01 57.61 53.67 50.77 46.76 45.43 44.53 41.74 39.93 38.45

The presented results are slightly different from those in the paper, which are the average results of multiple tests.

BibTeX

If you use this code for your research, please consider citing:

@inproceedings{zhu2021self,
  title={Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning},
  author={Zhu, Kai and Cao, Yang and Zhai, Wei and Cheng, Jie and Zha, Zheng-Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6801--6810},
  year={2021}
}
Owner
Kai Zhu
Kai Zhu
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
MohammadReza Sharifi 27 Dec 13, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022