FastFace: Lightweight Face Detection Framework

Overview

FastFace: Lightweight Face Detection Framework

PyPI Documentation Status Downloads PyPI - Python Version PyPI - License

Easy-to-use face detection framework, developed using pytorch-lightning.
Checkout documentation for more.

Key Features

  • 🔥 Use pretrained models for inference with just few lines of code
  • 📈 Evaluate models on different datasets
  • 🛠️ Train and prototype new models, using pre-defined architectures
  • 🚀 Export trained models with ease, to use in production

Contents

Installation

From PyPI

pip install fastface -U

From source

git clone https://github.com/borhanMorphy/light-face-detection.git
cd light-face-detection
pip install .

Pretrained Models

Pretrained models can be accessable via fastface.FaceDetector.from_pretrained()

Name Architecture Configuration Parameters Model Size Link
lffd_original lffd original 2.3M 9mb weights
lffd_slim lffd slim 1.5M 6mb weights

Demo

Using package

")[:,:,:3] # build model with pretrained weights model = ff.FaceDetector.from_pretrained("lffd_original") # model: pl.LightningModule # get model summary model.summarize() # set model to eval mode model.eval() # [optional] move model to gpu model.to("cuda") # model inference preds, = model.predict(img, det_threshold=.8, iou_threshold=.4) # preds: { # 'boxes': [[xmin, ymin, xmax, ymax], ...], # 'scores':[, ...] # } ">
import fastface as ff
import imageio

# load image as RGB
img = imageio.imread("")[:,:,:3]

# build model with pretrained weights
model = ff.FaceDetector.from_pretrained("lffd_original")
# model: pl.LightningModule

# get model summary
model.summarize()

# set model to eval mode
model.eval()

# [optional] move model to gpu
model.to("cuda")

# model inference
preds, = model.predict(img, det_threshold=.8, iou_threshold=.4)
# preds: {
#    'boxes': [[xmin, ymin, xmax, ymax], ...],
#    'scores':[, ...]
# }

Using demo.py script

python demo.py --model lffd_original --device cuda --input 

sample output; alt text

Benchmarks

Following results are obtained with this repository

WIDER FACE

validation set results

Name Easy Medium Hard
lffd_original 0.893 0.866 0.758
lffd_slim 0.866 0.854 0.742

Tutorials

References

Citations

@inproceedings{LFFD,
    title={LFFD: A Light and Fast Face Detector for Edge Devices},
    author={He, Yonghao and Xu, Dezhong and Wu, Lifang and Jian, Meng and Xiang, Shiming and Pan, Chunhong},
    booktitle={arXiv:1904.10633},
    year={2019}
}
Owner
Ömer BORHAN
In a quest to explore AI.
Ömer BORHAN
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

1 SNAS4MTF This repo is the official implementation for Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 5 Sep 21, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022