An example of time series augmentation methods with Keras

Overview

Time Series Augmentation

This is a collection of time series data augmentation methods and an example use using Keras.

News

  • 2020/04/16: Repository Created.
  • 2020/06/22: Accepted to ICPR 2020 - B. K. Iwana and S. Uchida, Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher, ICPR 2020 LINK
  • 2020/07/31: Survey Paper Posted on arXiv - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, arXiv LINK
  • 2021/05/11: Tensorflow v1 branched. The master will now support Tensorflow v2.
  • 2021/07/15: Survey Paper Published on PLOS ONE - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, PLOS ONE 16(7): e0254841, LINK

Requires

This code was developed in Python 3.6.9. and requires Tensorflow 2.4.1 and Keras 2.2.4

Normal Install

pip install tensorflow-gpu==2.4.1 keras==2.2.4 numpy==1.19.5 matplotlib==2.2.2 scikit-image==0.15.0 tqdm

Docker

cd docker
sudo docker build -t tsa .
docker run --runtime nvidia -rm -it -p 127.0.0.1:8888:8888 -v `pwd`:/work -w /work tsa jupyter notebook --allow-root

Newer docker installs might use --gpus all instead of --runtime nvidia

Dataset

main.py was designed to use the UCR Time Series Archive 2018 datasets. To install the datasets, download the .zip file from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ and extract the contents into the data folder.

Usage

Description of Time Series Augmentation Methods

Augmentation description

Jupyter Example

Jupyter Notebook

Keras Example

Example: To train a 1D VGG on the FiftyWords dataset from the UCR Time Series Archive 2018 with 4x the training dataset in Jittering, use:

python3 main.py --gpus=0 --dataset=CBF --preset_files --ucr2018 --normalize_input --train --save --jitter --augmentation_ratio=4 --model=vgg

Citation

B. K. Iwana and S. Uchida, "An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks," arXiv, 2020.

@article{iwana2020empirical,
  title={An Empirical Survey of Data Augmentation for Time Series Classification
  with Neural Networks},
  author={Iwana, Brian Kenji and Uchida, Seiichi},
  journal={arXiv preprint arXiv:2007.15951},
  year={2020}
}
Owner
九州大学 ヒューマンインタフェース研究室
Human Interface Laboratory, Kyushu University
九州大学 ヒューマンインタフェース研究室
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022