Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

Overview

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection.

Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation,
Kemal Oksuz, Baris Can Cam, Fehmi Kahraman, Zeynep Sonat Baltaci, Emre Akbas, Sinan Kalkan, BMVC 2021. (arXiv pre-print)

Summary

Mask-aware IoU: Mask-aware IoU (maIoU) is an IoU variant for better anchor assignment to supervise instance segmentation methods. Unlike the standard IoU, Mask-aware IoU also considers the ground truth masks while assigning a proximity score for an anchor. As a result, for example, if an anchor box overlaps with a ground truth box, but not with the mask of the ground truth, e.g. due to occlusion, then it has a lower score compared to IoU. Please check out the examples below for more insight. Replacing IoU by our maIoU in the state of the art ATSS assigner yields both performance improvement and efficiency (i.e. faster inference) compared to the standard YOLACT method.

maYOLACT Detector: Thanks to the efficiency due to ATSS with maIoU assigner, we incorporate more training tricks into YOLACT, and built maYOLACT Detector which is still real-time but significantly powerful (around 6 AP) than YOLACT. Our best maYOLACT model reaches SOTA performance by 37.7 mask AP on COCO test-dev at 25 fps.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@inproceedings{maIoU,
       title = {Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation},
       author = {Kemal Oksuz and Baris Can Cam and Fehmi Kahraman and Zeynep Sonat Baltaci and Sinan Kalkan and Emre Akbas},
       booktitle = {The British Machine Vision Conference (BMCV)},
       year = {2021}
}

Specification of Dependencies and Preparation

  • Please see get_started.md for requirements and installation of mmdetection.
  • Please refer to introduction.md for dataset preparation and basic usage of mmdetection.

Trained Models

Here, we report results in terms of AP (higher better) and oLRP (lower better).

Multi-stage Object Detection

Comparison of Different Assigners (on COCO minival)

Scale Assigner mask AP mask oLRP Log Config Model
400 Fixed IoU 24.8 78.3 log config model
400 ATSS w. IoU 25.3 77.7 log config model
400 ATSS w. maIoU 26.1 77.1 log config model
550 Fixed IoU 28.5 75.2 log config model
550 ATSS w. IoU 29.3 74.5 log config model
550 ATSS w. maIoU 30.4 73.7 log config model
700 Fixed IoU 29.7 74.3 log config model
700 ATSS w. IoU 30.8 73.3 log config model
700 ATSS w. maIoU 31.8 72.5 log config model

maYOLACT Detector (on COCO test-dev)

Scale Backbone mask AP fps Log Config Model
maYOLACT-550 ResNet-50 35.2 30 Coming Soon
maYOLACT-700 ResNet-50 37.7 25 Coming Soon

Running the Code

Training Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for training code. As an example, to train maYOLACT using images with 550 scale on 4 GPUs as we did, use the following command:

./tools/dist_train.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py 4

Test Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for test code. As an example, first download a trained model using the links provided in the tables below or you train a model, then run the following command to test a model model on multiple GPUs:

./tools/dist_test.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} 4 --eval bbox segm 

You can also test a model on a single GPU with the following example command:

python tools/test.py configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} --eval bbox segm
Owner
Kemal Oksuz
Kemal Oksuz
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021