FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

Related tags

Deep LearningFaceQgen
Overview

FaceQgen

FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

This repository is based on the paper: "FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment" presented in the IEEE International Conference on Automatic Face and Gesture Recognition 2021.

FaceQgen is a a face quality assessment method based on GANs capable of inferring quality directly from face images. It avoids using any type of numerical labelling of the training images thanks to following a semi-supervised learning approach without the need of a specific measurement of quality for its groundtruth apart from selecting a single high quality image per subject.

FaceQgen performs face image restoration, returning a high quality image (frontal pose, homogeneous background, etc.) when receiving a face image of unknown quality. We use three different similarity measures between the original and the restored images as quality measures: SSIM,MSE, and the output of the Discriminator of FaceQgen. Faces of high quality will experience less transformations during restoration, so the similarity values obtained in those cases will be higher than the ones obtained from low quality images.

The training of FaceQgen was done using the SCFace database.

-- Configuring environment in Windows:

  1. Installing Conda: https://conda.io/projects/conda/en/latest/user-guide/install/windows.html

Update Conda in the default environment:

conda update conda
conda upgrade --all

Create a new environment:

conda create -n [env-name]

Activate the environment:

conda activate [env-name]
  1. Installing dependencies in your environment:

Install Tensorflow and all its dependencies:

pip install tensorflow

Install Keras:

pip install keras

Install OpenCV:

conda install -c conda-forge opencv
  1. If you want to use a CUDA compatible GPU for faster predictions:

You will need CUDA and the Nvidia drivers installed in your computer: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

Then, install the GPU version of Tensorflow:

pip install tensorflow-gpu

-- Using FaceQgen for predicting scores:

  1. Download or clone the repository.
  2. Due to the size of the video example, please download one of the the FaceQgen pretrained model and place the downloaded .h5 file it in the /src folder:
  1. Edit and run the FaceQgen_obtainscores_Keras.py script.
    • You will need to change the folder from which the script will try to charge the face images. It is src/Samples_cropped by default.
    • The best results will be obtained when the input images have been cropped just to the zone of the detected face. In our experiments we have used the MTCNN face detector from here, but other detector can be used.
    • FaceQgen will ouput a quality score for each input image. All the scores will are saved in a .txt file into the src folder. This file contain each filename with its associated quality metric.
Owner
Javier Hernandez-Ortega
M.Sc. in Computer Science & Electrical Engineering from Universidad Autonoma de Madrid. PhD student.
Javier Hernandez-Ortega
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Small utility to demangle Nim symbols in callgrind files

nim_callgrind A small utility to demangle Nim symbols from callgrind files. Usage Run your (Nim) program with something like this: valgrind --tool=cal

kraptor 3 Feb 15, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022