Entity-Based Knowledge Conflicts in Question Answering.

Overview

Entity-Based Knowledge Conflicts in Question Answering

Run Instructions | Paper | Citation | License

This repository provides the Substitution Framework described in Section 2 of our paper Entity-Based Knowledge Conflicts in Question Answering. Given a quesion answering dataset, we derive a new dataset where the context passages have been modified to have new answers to their question. By training on the original examples and evaluating on the derived examples, we simulate a parametric-contextual knowledge conflict --- useful for understanding how model's employ sources of knowledge to arrive at a decision.

Our dataset derivation follows two steps: (1) identifying named entity answers, and (2) replacing all occurrences of the answer in the context with a substituted entity, effectively changing the answer. The answer substitutions depend on the chosen substitution policy.

Run Instructions

1. Setup

Setup requirements and download SpaCy and WikiData dependencies.

bash setup.sh

2. (Optional) Download and Process Wikidata

This optional stage reproduces wikidata/entity_info.json.gz, downloaded during Setup.

Download the Wikidata dump from October 2020 here and the Wikipedia pageviews from June 2, 2020 here.

NOTE: We don't use the newest Wikidata dump because Wikidata doesn't keep old dumps so reproducibility is an issue. If you'd like to use the newest dump, it is available here. Wikipedia pageviews, on the other hand, are kept around and can be found here. Be sure to download the *-user.bz2 file and not the *-automatic.bz2 or the *-spider.bz2 files.

To extract out Wikidata information, run the following (takes ~8 hours)

python extract_wikidata_info.py --wikidata_dump wikidata-20201026-all.json.bz2 --popularity_dump pageviews-20210602-user.bz2 --output_file entity_info.json.gz

The output file of this step is available here.

3. Load and Preprocess Dataset

PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsTrain -w wikidata/entity_info.json.gz
PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsDev -w wikidata/entity_info.json.gz

4. Generate Substitutions

PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsTrain.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsTrain
   
    .jsonl 
    
      -n 1 ...
PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsDev.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsDev
     
      .jsonl 
      
        -n 1 ...

      
     
    
   

See descriptions of the substitution policies (substitution-commands) we provide here. Inspect the argparse and substitution-specific subparsers in generate_substitutions.py to see additional arguments.

Our Substitution Functions

Here we define the the substitution functions we provide. These functions ingests a QADataset, and modifies the context passage, according to defined rules, such that there is now a new answer to the question, according to the context. Greater detail is provided in our paper.

  • Alias Substitution (sub-command: alias-substitution) --- Here we replace an answer with one of it's wikidata aliases. Since the substituted answer is always semantically equivalent, answer type preservation is naturally maintained.
  • Popularity Substitution (sub-command: popularity-substitution) --- Here we replace answers with a WikiData answer of the same type, with a specified popularity bracket (according to monthly page views).
  • Corpus Substitution (sub-command: corpus-substitution) --- Here we replace answers with other answers of the same type, sampled from the same corpus.
  • Type Swap Substitution (sub-command: type-swap-substitution) --- Here we replace answers with other answers of different type, sampled from the same corpus.

How to Add Your own Dataset / Substitution Fn / NER Models

Use your own Dataset

To add your own dataset, create your own subclass of QADataset (in src/classes/qadataset.py).

  1. Overwrite the read_original_dataset function, to read your dataset, creating a List of QAExample objects.
  2. Add your class and the url/filepath to the DATASETS variable in src/load_dataset.py.

See MRQANaturalQuetsionsDataset in src/classes/qadataset.py as an example.

Use your own Substitution Function

We define 5 different substitution functions in src/generate_substitutions.py. These are described here. Inspect their docstrings and feel free to add your own, leveraging any of the wikidata, derived answer type, or other info we populate for examples and answers. Here are the steps to create your own:

  1. Add a subparser in src/generate_substitutions.py for your new function, with any relevant parameters. See alias_sub_parser as an example.
  2. Add your own substitution function to src/substitution_fns.py, ensuring the signature arguments match those specified in the subparser. See alias_substitution_fn as an example.
  3. Add a reference to your new function to SUBSTITUTION_FNS in src/generate_substitutions.py. Ensure the dictionary key matches the subparser name.

Use your own Named Entity Recognition and/or Entity Linking Model

Our SpaCy NER model is trained and used mainly to categorize answer text into answer types. Only substitutions that preserve answer type are likely to be coherent.

The functions which need to be changed are:

  1. run_ner_linking in utils.py, which loads the NER model and populates info for each answer (see function docstring).
  2. Answer._select_answer_type() in src/classes/answer.py, which uses the NER answer type label and wikidata type labels to cateogrize the answer into a type category.

Citation

Please cite the following if you found this resource or our paper useful.

@misc{longpre2021entitybased,
      title={Entity-Based Knowledge Conflicts in Question Answering}, 
      author={Shayne Longpre and Kartik Perisetla and Anthony Chen and Nikhil Ramesh and Chris DuBois and Sameer Singh},
      year={2021},
      eprint={2109.05052},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

The Knowledge Conflicts repository, and entity-based substitution framework are licensed according to the LICENSE file.

Contact Us

To contact us feel free to email the authors in the paper or create an issue in this repository.

Owner
Apple
Apple
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022