Entity-Based Knowledge Conflicts in Question Answering.

Overview

Entity-Based Knowledge Conflicts in Question Answering

Run Instructions | Paper | Citation | License

This repository provides the Substitution Framework described in Section 2 of our paper Entity-Based Knowledge Conflicts in Question Answering. Given a quesion answering dataset, we derive a new dataset where the context passages have been modified to have new answers to their question. By training on the original examples and evaluating on the derived examples, we simulate a parametric-contextual knowledge conflict --- useful for understanding how model's employ sources of knowledge to arrive at a decision.

Our dataset derivation follows two steps: (1) identifying named entity answers, and (2) replacing all occurrences of the answer in the context with a substituted entity, effectively changing the answer. The answer substitutions depend on the chosen substitution policy.

Run Instructions

1. Setup

Setup requirements and download SpaCy and WikiData dependencies.

bash setup.sh

2. (Optional) Download and Process Wikidata

This optional stage reproduces wikidata/entity_info.json.gz, downloaded during Setup.

Download the Wikidata dump from October 2020 here and the Wikipedia pageviews from June 2, 2020 here.

NOTE: We don't use the newest Wikidata dump because Wikidata doesn't keep old dumps so reproducibility is an issue. If you'd like to use the newest dump, it is available here. Wikipedia pageviews, on the other hand, are kept around and can be found here. Be sure to download the *-user.bz2 file and not the *-automatic.bz2 or the *-spider.bz2 files.

To extract out Wikidata information, run the following (takes ~8 hours)

python extract_wikidata_info.py --wikidata_dump wikidata-20201026-all.json.bz2 --popularity_dump pageviews-20210602-user.bz2 --output_file entity_info.json.gz

The output file of this step is available here.

3. Load and Preprocess Dataset

PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsTrain -w wikidata/entity_info.json.gz
PYTHONPATH=. python src/load_dataset.py -d MRQANaturalQuestionsDev -w wikidata/entity_info.json.gz

4. Generate Substitutions

PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsTrain.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsTrain
   
    .jsonl 
    
      -n 1 ...
PYTHONPATH=. python src/generate_substitutions.py --inpath datasets/normalized/MRQANaturalQuestionsDev.jsonl --outpath datasets/substitution-sets/MRQANaturalQuestionsDev
     
      .jsonl 
      
        -n 1 ...

      
     
    
   

See descriptions of the substitution policies (substitution-commands) we provide here. Inspect the argparse and substitution-specific subparsers in generate_substitutions.py to see additional arguments.

Our Substitution Functions

Here we define the the substitution functions we provide. These functions ingests a QADataset, and modifies the context passage, according to defined rules, such that there is now a new answer to the question, according to the context. Greater detail is provided in our paper.

  • Alias Substitution (sub-command: alias-substitution) --- Here we replace an answer with one of it's wikidata aliases. Since the substituted answer is always semantically equivalent, answer type preservation is naturally maintained.
  • Popularity Substitution (sub-command: popularity-substitution) --- Here we replace answers with a WikiData answer of the same type, with a specified popularity bracket (according to monthly page views).
  • Corpus Substitution (sub-command: corpus-substitution) --- Here we replace answers with other answers of the same type, sampled from the same corpus.
  • Type Swap Substitution (sub-command: type-swap-substitution) --- Here we replace answers with other answers of different type, sampled from the same corpus.

How to Add Your own Dataset / Substitution Fn / NER Models

Use your own Dataset

To add your own dataset, create your own subclass of QADataset (in src/classes/qadataset.py).

  1. Overwrite the read_original_dataset function, to read your dataset, creating a List of QAExample objects.
  2. Add your class and the url/filepath to the DATASETS variable in src/load_dataset.py.

See MRQANaturalQuetsionsDataset in src/classes/qadataset.py as an example.

Use your own Substitution Function

We define 5 different substitution functions in src/generate_substitutions.py. These are described here. Inspect their docstrings and feel free to add your own, leveraging any of the wikidata, derived answer type, or other info we populate for examples and answers. Here are the steps to create your own:

  1. Add a subparser in src/generate_substitutions.py for your new function, with any relevant parameters. See alias_sub_parser as an example.
  2. Add your own substitution function to src/substitution_fns.py, ensuring the signature arguments match those specified in the subparser. See alias_substitution_fn as an example.
  3. Add a reference to your new function to SUBSTITUTION_FNS in src/generate_substitutions.py. Ensure the dictionary key matches the subparser name.

Use your own Named Entity Recognition and/or Entity Linking Model

Our SpaCy NER model is trained and used mainly to categorize answer text into answer types. Only substitutions that preserve answer type are likely to be coherent.

The functions which need to be changed are:

  1. run_ner_linking in utils.py, which loads the NER model and populates info for each answer (see function docstring).
  2. Answer._select_answer_type() in src/classes/answer.py, which uses the NER answer type label and wikidata type labels to cateogrize the answer into a type category.

Citation

Please cite the following if you found this resource or our paper useful.

@misc{longpre2021entitybased,
      title={Entity-Based Knowledge Conflicts in Question Answering}, 
      author={Shayne Longpre and Kartik Perisetla and Anthony Chen and Nikhil Ramesh and Chris DuBois and Sameer Singh},
      year={2021},
      eprint={2109.05052},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

The Knowledge Conflicts repository, and entity-based substitution framework are licensed according to the LICENSE file.

Contact Us

To contact us feel free to email the authors in the paper or create an issue in this repository.

Owner
Apple
Apple
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022