An Efficient and Effective Framework for Session-based Social Recommendation

Overview

SEFrame

This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation".

Requirements

  • Python 3.8
  • CUDA 10.2
  • PyTorch 1.7.1
  • DGL 0.5.3
  • NumPy 1.19.2
  • Pandas 1.1.3

Usage

  1. Install all the requirements.

  2. Download the datasets:

  3. Create a folder called datasets and extract the raw data files to the folder.
    The folder should include the following files for each dataset:

    • Gowalla: loc-gowalla_totalCheckins.txt and loc-gowalla_edges.txt
    • Delicious: user_taggedbookmarks-timestamps.dat and user_contacts-timestamps.dat
    • Foursquare: dataset_WWW_Checkins_anonymized.txt and dataset_WWW_friendship_new.txt
  4. Preprocess the datasets using the Python script preprocess.py.
    For example, to preprocess the Gowalla dataset, run the following command:

    python preprocess.py --dataset gowalla

    The above command will create a folder datasets/gowalla to store the preprocessed data files.
    Replace gowalla with delicious or foursquare to preprocess other datasets.

    To see the detailed usage of preprocess.py, run the following command:

    python preprocess.py -h
  5. Train and evaluate a model using the Python script run.py.
    For example, to train and evaluate the model NARM on the Gowalla dataset, run the following command:

    python run.py --model NARM --dataset-dir datasets/gowalla

    Other available models are NextItNet, STAMP, SRGNN, SSRM, SNARM, SNextItNet, SSTAMP, SSRGNN, SSSRM, DGRec, and SERec.
    You can also see all the available models in the srs/models folder.

    To see the detailed usage of run.py, run the following command:

    python run.py -h

Dataset Format

You can train the models using your datasets. Each dataset should contain the following files:

  • stats.txt: A TSV file containing three fields, num_users, num_items, and max_len (the maximum length of sessions). The first row is the header and the second row contains the values.

  • train.txt: A TSV file containing all training sessions, where each session has three fileds, namely, sessionId, userId, and items. Both sessionId and userId should be integers. A session with a larger sessionId means that it was generated later (this requirement can be ignored if the used models do not care about the order of sessions, i.e., when the models are not DGRec). The userId should be in the range of [0, num_users). The items field of each session contains the clicked items in the session which is a sequence of item IDs separated by commas. The item IDs should be in the range of [0, num_items).

  • valid.txt and test.txt: TSV files containing all validation and test sessions, respectively. Both files have the same format as train.txt. Note that the session IDs in valid.txt and test.txt should be larger than those in train.txt.

  • edges.txt: A TSV file containing the relations in the social network. It has two columns, follower and followee. Both columns contain the user IDs.

You can see datasets/delicious for an example of the dataset.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{chen2021seframe,
   title="An Efficient and Effective Framework for Session-based Social Recommendation",
   author="Tianwen {Chen} and Raymond Chi-Wing {Wong}",
   booktitle="Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21)",
   pages="400--408",
   year="2021"
}
Owner
Tianwen CHEN
A CS PhD Student in HKUST
Tianwen CHEN
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

RecList is an open source library providing behavioral, "black-box" testing for recommender systems.

Jacopo Tagliabue 375 Dec 30, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Collaborative variational bandwidth auto-encoder (VBAE) for recommender systems.

Collaborative Variational Bandwidth Auto-encoder The codes are associated with the following paper: Collaborative Variational Bandwidth Auto-encoder f

Yaochen Zhu 14 Dec 11, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022