ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

Overview

ToR[e]cSys


News

It is happy to know the new package of Tensorflow Recommenders.


ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embedding. The project objective is to develop a ecosystem to experiment, share, reproduce, and deploy in real world in a smooth and easy way (Hope it can be done).

Installation

TBU

Documentation

The complete documentation for ToR[e]cSys is available via ReadTheDocs website.
Thank you for ReadTheDocs! You are the best!

Implemented Models

1. Subsampling

Model Name Research Paper Year
Word2Vec Omer Levy et al, 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings 2015

2. Negative Sampling

Model Name Research Paper Year
TBU

3. Click through Rate (CTR) Model

Model Name Research Paper Year
Logistic Regression / /
Factorization Machine Steffen Rendle, 2010. Factorization Machine 2010
Factorization Machine Support Neural Network Weinan Zhang et al, 2016. Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction 2016
Field-Aware Factorization Machine Yuchin Juan et al, 2016. Field-aware Factorization Machines for CTR Prediction 2016
Product Neural Network Yanru QU et al, 2016. Product-based Neural Networks for User Response Prediction 2016
Attentional Factorization Machine Jun Xiao et al, 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 2017
Deep and Cross Network Ruoxi Wang et al, 2017. Deep & Cross Network for Ad Click Predictions 2017
Deep Factorization Machine Huifeng Guo et al, 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017
Neural Collaborative Filtering Xiangnan He et al, 2017. Neural Collaborative Filtering 2017
Neural Factorization Machine Xiangnan He et al, 2017. Neural Factorization Machines for Sparse Predictive Analytics 2017
eXtreme Deep Factorization Machine Jianxun Lian et al, 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems 2018
Deep Field-Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Deep Matching Correlation Prediction Wentao Ouyang et al, 2019. Representation Learning-Assisted Click-Through Rate Prediction 2019
Deep Session Interest Network Yufei Feng et al, 2019. Deep Session Interest Network for Click-Through Rate Prediction 2019
Elaborated Entire Space Supervised Multi Task Model Hong Wen et al, 2019. Conversion Rate Prediction via Post-Click Behaviour Modeling 2019
Entire Space Multi Task Model Xiao Ma et al, 2019. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate 2019
Field Attentive Deep Field Aware Factorization Machine Junlin Zhang et al, 2019. FAT-DeepFFM: Field Attentive Deep Field-aware Factorization Machine 2019
Position-bias aware learning framework Huifeng Guo et al, 2019. PAL: a position-bias aware learning framework for CTR prediction in live recommender systems 2019

4. Embedding Model

Model Name Research Paper Year
Matrix Factorization / /
Starspace Ledell Wu et al, 2017 StarSpace: Embed All The Things! 2017

5. Learning-to-Rank (LTR) Model

Model Name Research Paper Year
Personalized Re-ranking Model Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation 2019

Getting Started

There are several ways using ToR[e]cSys to develop a Recommendation System. Before talking about them, we first need to discuss about components of ToR[e]cSys.

A model in ToR[e]cSys is constructed by two parts mainly: inputs and model, and they will be wrapped into a sequential module (torecsys.models.sequential) to be trained by Trainer (torecsys.trainer.Trainer). \

For inputs module (torecsys.inputs), it will handle most kinds of inputs in recommendation system, like categorical features, images, etc, with several kinds of methods, including token embedding, pre-trained image models, etc.

For models module (torecsys.models), it will implement some famous models in recommendation system, like Factorization Machine family. I hope I can make the library rich. To construct a model in the module, in addition to the modules implemented in PyTorch, I will also implement some layers in torecsys.layers which are called by models usually.

After the explanation of ToR[e]cSys, let's move on to the Getting Started. We can use ToR[e]cSys in the following ways:

  1. Run by command-line (In development)

    
    

torecsys build --inputs_config='{}'
--model_config='{"method":"FM", "embed_size": 8, "num_fields": 2}'
--regularizer_config='{"weight_decay": 0.1}'
--criterion_config='{"method": "MSELoss"}'
--optimizer_config='{"method": "SGD", "lr": "0.01"}'
... ```

  1. Run by class method

    
    

import torecsys as trs

build trainer by class method

trainer = trs.trainer.Trainer()
.bind_objective("CTR")
.set_inputs()
.set_model(method="FM", embed_size=8, num_fields=2)
.set_sequential()
.set_regularizer(weight_decay=0.1)
.build_criterion(method="MSELoss")
.build_optimizer(method="SGD", lr="0.01")
.build_loader(name="train", ...)
.build_loader(name="eval", ...)
.set_target_fields("labels")
.set_max_num_epochs(10)
.use_cuda()

start to fit the model

trainer.fit() ```

  1. Run like PyTorch Module

    
    

import torch import torch.nn as nn import torecsys as trs

some codes here

inputs = trs.inputs.InputsWrapper(schema=schema) model = trs.models.FactorizationMachineModel(embed_size=8, num_fields=2)

for i in range(epochs): optimizer.zero_grad() outputs = model(**inputs(batches)) loss = criterion(outputs, labels) loss.backward() optimizer.step() ```

(In development) You can anyone you like to train a Recommender System and serve it in the following ways:

  1. Run by command-line

    > torecsys serve --load_from='{}'
  2. Run by class method

    
    

import torecsys as trs

serving = trs.serving.Model()
.load_from(filepath=filepath) .run() ```

  1. Serve it yourself

    
    

from flask import Flask, request import torecsys as trs

model = trs.serving.Model()
.load_from(filepath=filepath)

@app.route("/predict") def predict(): args = request.json inference = model.predict(args) return inference, 200

if name == "main": app.run() ```

For further details, please refer to the example in repository or read the documentation. Hope you enjoy~

Examples

TBU

Sample Codes

TBU

Sample of Experiments

TBU

Authors

License

ToR[e]cSys is MIT-style licensed, as found in the LICENSE file.

Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Movie Recommender System

Movie-Recommender-System Movie-Recommender-System is a web application using which a user can select his/her watched movie from list and system will r

1 Jul 14, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems

DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom

Qitian Wu 78 Dec 10, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022