ScaleNet: A Shallow Architecture for Scale Estimation

Related tags

Deep LearningScaleNet
Overview

ScaleNet: A Shallow Architecture for Scale Estimation

Repository for the code of ScaleNet paper:

"ScaleNet: A Shallow Architecture for Scale Estimation".
Axel Barroso-Laguna, Yurun Tian, and Krystian Mikolajczyk. arxiv 2021.

[Paper on arxiv]

Prerequisite

Python 3.7 is required for running and training ScaleNet code. Use Conda to install the dependencies:

conda create --name scalenet_env
conda activate scalenet_env 
conda install pytorch==1.2.0 -c pytorch
conda install -c conda-forge tensorboardx opencv tqdm 
conda install -c anaconda pandas 
conda install -c pytorch torchvision 

Scale estimation

run_scalenet.py can be used to estimate the scale factor between two input images. We provide as an example two images, im1.jpg and im2.jpg, within the assets/im_test folder as an example. For a quick test, please run:

python run_scalenet.py --im1_path assets/im_test/im1.jpg --im2_path assets/im_test/im2.jpg

Arguments:

  • im1_path: Path to image A.
  • im2_path: Path to image B.

It returns the scale factor A->B.

Training ScaleNet

We provide a list of Megadepth image pairs and scale factors in the assets folder. We use the undistorted images, corresponding camera intrinsics, and extrinsics preprocessed by D2-Net. You can download them directly from their main repository. If you desire to use the default configuration for training, just run the following line:

python train_ScaleNet.py --image_data_path /path/to/megadepth_d2net

There are though some important arguments to take into account when training ScaleNet.

Arguments:

  • image_data_path: Path to the undistorted Megadepth images from D2-Net.
  • save_processed_im: ScaleNet processes the images so that they are center-cropped and resized to a default resolution. We give the option to store the processed images and load them during training, which results in a much faster training. However, the size of the files can be big, and hence, we suggest storing them in a large storage disk. Default: True.
  • root_precomputed_files: Path to save the processed image pairs.

If you desire to modify ScaleNet training or architecture, look for all the arguments in the train_ScaleNet.py script.

Test ScaleNet - camera pose

In addition to the training, we also provide a template for testing ScaleNet in the camera pose task. In assets/data/test.csv, you can find the test Megadepth pairs, along with their scale change as well as their camera poses.

Run the following command to test ScaleNet + SIFT in our custom camera pose split:

python test_camera_pose.py --image_data_path /path/to/megadepth_d2net

camera_pose.py script is intended to provide a structure of our camera pose experiment. You can change either the local feature extractor or the scale estimator and obtain your camera pose results.

BibTeX

If you use this code or the provided training/testing pairs in your research, please cite our paper:

@InProceedings{Barroso-Laguna2021_scale,
    author = {Barroso-Laguna, Axel and Tian, Yurun and Mikolajczyk, Krystian},
    title = {{ScaleNet: A Shallow Architecture for Scale Estimation}},
    booktitle = {Arxiv: },
    year = {2021},
}
Owner
Axel Barroso
Computer Vision PhD Student
Axel Barroso
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd πŸ“Š Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles πŸš—

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version δΈ­ζ–‡η‰ˆζœ¬] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023