Easy to use Python camera interface for NVIDIA Jetson

Related tags

Deep Learningjetcam
Overview

JetCam

JetCam is an easy to use Python camera interface for NVIDIA Jetson.

  • Works with various USB and CSI cameras using Jetson's Accelerated GStreamer Plugins

  • Easily read images as numpy arrays with image = camera.read()

  • Set the camera to running = True to attach callbacks to new frames

JetCam makes it easy to prototype AI projects in Python, especially within the Jupyter Lab programming environment installed in JetCard.

If you find an issue, please let us know!

Setup

git clone https://github.com/NVIDIA-AI-IOT/jetcam
cd jetcam
sudo python3 setup.py install

JetCam is tested against a system configured with the JetCard setup. Different system configurations may require additional steps.

Usage

Below we show some usage examples. You can find more in the notebooks.

Create CSI camera

Call CSICamera to use a compatible CSI camera. capture_width, capture_height, and capture_fps will control the capture shape and rate that images are aquired. width and height control the final output shape of the image as returned by the read function.

from jetcam.csi_camera import CSICamera

camera = CSICamera(width=224, height=224, capture_width=1080, capture_height=720, capture_fps=30)

Create USB camera

Call USBCamera to use a compatbile USB camera. The same parameters as CSICamera apply, along with a parameter capture_device that indicates the device index. You can check the device index by calling ls /dev/video*.

from jetcam.usb_camera import USBCamera

camera = USBCamera(capture_device=1)

Read

Call read() to read the latest image as a numpy.ndarray of data type np.uint8 and shape (224, 224, 3). The color format is BGR8.

image = camera.read()

The read function also updates the camera's internal value attribute.

camera.read()
image = camera.value

Callback

You can also set the camera to running = True, which will spawn a thread that acquires images from the camera. These will update the camera's value attribute automatically. You can attach a callback to the value using the traitlets library. This will call the callback with the new camera value as well as the old camera value

camera.running = True

def callback(change):
    new_image = change['new']
    # do some processing...

camera.observe(callback, names='value')

Cameras

CSI Cameras

These cameras work with the CSICamera class. Try them out by following the example notebook.

Model Infared FOV Resolution Cost
Raspberry Pi Camera V2 62.2 3280x2464 $25
Raspberry Pi Camera V2 (NOIR) x 62.2 3280x2464 $31
Arducam IMX219 CS lens mount 3280x2464 $65
Arducam IMX219 M12 lens mount 3280x2464 $60
LI-IMX219-MIPI-FF-NANO 3280x2464 $29
WaveShare IMX219-77 77 3280x2464 $19
WaveShare IMX219-77IR x 77 3280x2464 $21
WaveShare IMX219-120 120 3280x2464 $20
WaveShare IMX219-160 160 3280x2464 $23
WaveShare IMX219-160IR x 160 3280x2464 $25
WaveShare IMX219-200 200 3280x2464 $27

USB Cameras

These cameras work with the USBCamera class. Try them out by following the example notebook.

Model Infared FOV Resolution Cost
Logitech C270 60 1280x720 $18

See also

  • JetBot - An educational AI robot based on NVIDIA Jetson Nano

  • JetRacer - An educational AI racecar using NVIDIA Jetson Nano

  • JetCard - An SD card image for web programming AI projects with NVIDIA Jetson Nano

  • torch2trt - An easy to use PyTorch to TensorRT converter

Comments
  • Camera works, Jetcam does not

    Camera works, Jetcam does not

    I am trying to get a Raspberry Pi v2 camera module working on a Jetson Xavier NX with Jetpack 4.4 installed.

    (Specifically, I want to use Jetcam because one of your other projects, https://github.com/NVIDIA-AI-IOT/trt_pose uses Jetcam in its live demo.)

    I know my camera is connected properly and working because if I run:

    gst-launch-1.0 nvarguscamerasrc ! nvoverlaysink
    

    ... I get a video image on screen immediately, no problem.

    However, running even the most basic example (csi_camera notebook), I always get errors:

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    /usr/local/lib/python3.6/dist-packages/jetcam-0.0.0-py3.6.egg/jetcam/csi_camera.py in __init__(self, *args, **kwargs)
         23             if not re:
    ---> 24                 raise RuntimeError('Could not read image from camera.')
         25         except:
    
    RuntimeError: Could not read image from camera.
    
    During handling of the above exception, another exception occurred:
    
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-2-4d23bcae2fae> in <module>
          1 from jetcam.csi_camera import CSICamera
          2 
    ----> 3 camera = CSICamera(width=224, height=224, capture_width=1980, capture_height=1080, capture_fps=30)
    
    /usr/local/lib/python3.6/dist-packages/jetcam-0.0.0-py3.6.egg/jetcam/csi_camera.py in __init__(self, *args, **kwargs)
         25         except:
         26             raise RuntimeError(
    ---> 27                 'Could not initialize camera.  Please see error trace.')
         28 
         29         atexit.register(self.cap.release)
    
    RuntimeError: Could not initialize camera.  Please see error trace
    

    I've even tried the fix (hack?) suggested in https://github.com/NVIDIA-AI-IOT/jetcam/issues/12 but this makes no difference.

    Any advice on what to look for or what the issue could be?

    opened by anselanza 3
  • remove duplicate comma

    remove duplicate comma

    This duplicate comma causes an error on Jetpack 4.3 (OpenCV 4). error opening bin: could not parse caps "video/x-raw, , format=(string)BGR" Fix #17

    opened by borongyuan 3
  • camera can not initial

    camera can not initial

    Python 3.6.9 (default, Oct 8 2020, 12:12:24) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information.

    from jetcam.csi_camera import CSICamera camera = CSICamera(width=224, height=224, capture_width=1080, capture_height=720, capture_fps=30) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/jetcam-0.0.0-py3.6.egg/jetcam/csi_camera.py", line 24, in init RuntimeError: Could not read image from camera.

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "", line 1, in File "/usr/local/lib/python3.6/dist-packages/jetcam-0.0.0-py3.6.egg/jetcam/csi_camera.py", line 27, in init RuntimeError: Could not initialize camera. Please see error trace.

    opened by wangnan31415926 1
  • cv2.cpython-36m-aarch64-linux-gnu.so: undefined symbol

    cv2.cpython-36m-aarch64-linux-gnu.so: undefined symbol

    [email protected]:/usr/lib$ python3
    Python 3.6.8 (default, Jan 14 2019, 11:02:34)
    [GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from jetcam.usb_camera import USBCamera
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/usr/local/lib/python3.6/dist-packages/jetcam-0.0.0-py3.6.egg/jetcam/usb_camera.py", line 3, in <module>
    ImportError: /usr/local/lib/python3.6/dist-packages/cv2.cpython-36m-aarch64-linux-gnu.so: undefined symbol: _ZTIN2cv3dnn14dnn4_v201809175LayerE
    >>>
    
    
    

    My HW is jetson nano and SW env is

    [email protected]:/usr/lib$ jetson-release
     - NVIDIA Jetson NANO/TX1
       * Jetpack 4.2 [L4T 32.1.0]
       * CUDA GPU architecture 5.3
     - Libraries:
       * CUDA 10.0.166
       * cuDNN 7.3.1.28-1+cuda10.0
       * TensorRT 5.0.6.3-1+cuda10.0
       * Visionworks 1.6.0.500n
       * OpenCV 4.0.1 compiled CUDA: YES
     - Jetson Performance: active
    [email protected]:/usr/lib$
    
    
    opened by hgnan 0
  • Install failure

    Install failure

    I runsudo python3 setup.py install

    I get the following:

    /usr/local/lib/python3.8/dist-packages/setuptools/command/install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/setuptools/command/easy_install.py:144: EasyInstallDeprecationWarning: easy_install command is deprecated. Use build and pip and other standards-based tools.
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: 0.1.36ubuntu1 is an invalid version and will not be supported in a future release
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: 0.23ubuntu1 is an invalid version and will not be supported in a future release
      warnings.warn(
    running bdist_egg
    running egg_info
    writing jetcam.egg-info/PKG-INFO
    writing dependency_links to jetcam.egg-info/dependency_links.txt
    writing top-level names to jetcam.egg-info/top_level.txt
    reading manifest file 'jetcam.egg-info/SOURCES.txt'
    adding license file 'LICENSE.md'
    writing manifest file 'jetcam.egg-info/SOURCES.txt'
    installing library code to build/bdist.linux-aarch64/egg
    running install_lib
    running build_py
    creating build/bdist.linux-aarch64/egg
    creating build/bdist.linux-aarch64/egg/jetcam
    copying build/lib/jetcam/csi_camera.py -> build/bdist.linux-aarch64/egg/jetcam
    copying build/lib/jetcam/__init__.py -> build/bdist.linux-aarch64/egg/jetcam
    copying build/lib/jetcam/usb_camera.py -> build/bdist.linux-aarch64/egg/jetcam
    copying build/lib/jetcam/camera.py -> build/bdist.linux-aarch64/egg/jetcam
    copying build/lib/jetcam/utils.py -> build/bdist.linux-aarch64/egg/jetcam
    byte-compiling build/bdist.linux-aarch64/egg/jetcam/csi_camera.py to csi_camera.cpython-38.pyc
    byte-compiling build/bdist.linux-aarch64/egg/jetcam/__init__.py to __init__.cpython-38.pyc
    byte-compiling build/bdist.linux-aarch64/egg/jetcam/usb_camera.py to usb_camera.cpython-38.pyc
    byte-compiling build/bdist.linux-aarch64/egg/jetcam/camera.py to camera.cpython-38.pyc
    byte-compiling build/bdist.linux-aarch64/egg/jetcam/utils.py to utils.cpython-38.pyc
    creating build/bdist.linux-aarch64/egg/EGG-INFO
    copying jetcam.egg-info/PKG-INFO -> build/bdist.linux-aarch64/egg/EGG-INFO
    copying jetcam.egg-info/SOURCES.txt -> build/bdist.linux-aarch64/egg/EGG-INFO
    copying jetcam.egg-info/dependency_links.txt -> build/bdist.linux-aarch64/egg/EGG-INFO
    copying jetcam.egg-info/top_level.txt -> build/bdist.linux-aarch64/egg/EGG-INFO
    zip_safe flag not set; analyzing archive contents...
    creating 'dist/jetcam-0.0.0-py3.8.egg' and adding 'build/bdist.linux-aarch64/egg' to it
    removing 'build/bdist.linux-aarch64/egg' (and everything under it)
    Processing jetcam-0.0.0-py3.8.egg
    Removing /usr/lib/python3.8/site-packages/jetcam-0.0.0-py3.8.egg
    Copying jetcam-0.0.0-py3.8.egg to /usr/lib/python3.8/site-packages
    jetcam 0.0.0 is already the active version in easy-install.pth
    
    Installed /usr/lib/python3.8/site-packages/jetcam-0.0.0-py3.8.egg
    Processing dependencies for jetcam==0.0.0
    Finished processing dependencies for jetcam==0.0.0
    

    import jetcam returns ModuleNotFoundError: No module named 'jetcam'

    What am I doing wrong?

    opened by master0v 1
  • Jetbot Camera Not Working- RuntimeError: Could not initialize camera.  Please see error trace.

    Jetbot Camera Not Working- RuntimeError: Could not initialize camera. Please see error trace.

    Hello, For some reason I can't get my camera to work again. For context, I tried to use a custom dataset from roboflow but then my kernel kept dying after installing roboflow. I reconfigured the right numpy and edited my .bashrc as I saw in NVIDIA's forum. But now the camera wont initialize. I know it works because it used to work before. I also am able to save a short video with it and able to call it in the terminal. But whenever I try to run a cell in Jupyter that requires the camera, it fails. I've tried restarting the camera too. But no luck :( Any help would be appreciated!

    opened by niiita 1
  • Camera ON LED continues to be on unless I restart the OS.

    Camera ON LED continues to be on unless I restart the OS.

    Hi,

    How can I close the camera after camera.unobserve(update_image, names='value') ? The camera ON LED continues to be on unless I restart the OS. I am using Logitech C270 USB camera. Is there a command to close the camera?

    opened by jam244 0
  • jetcam thread race - read thread and processing thread

    jetcam thread race - read thread and processing thread

    with camera.running = True, jetcam spawns a thread which reads into camera.value

    Now let's say we do, new_image = change['new'] and do some processing. I guess Python does shallow copying and only assigns a reference to the original image array in the new_image variable. So, effectively, new_image and camera.value are pointing to the same memory region. Lets say my processing-thread takes a very long time. In the mean time, camera.value is updated by jetcam-thread. This can cause a thread race. Is that right?

    opened by PhilipsKoshy 0
  • Cannot query video position: status=0, value=-1, duration=-1

    Cannot query video position: status=0, value=-1, duration=-1

    i tried camera = USBCamera(width=224, height=224, capture_width=640, capture_height=480, capture_device=0) the reply is [ WARN:0] global /home/nvidia/host/build_opencv/nv_opencv/modules/videoio/src/cap_gstreamer.cpp (933) open OpenCV | GStreamer warning: Cannot query video position: status=0, value=-1, duration=-1

    opened by Chenhait 0
  • AttributeError: 'directional_link' object has no attribute 'link'

    AttributeError: 'directional_link' object has no attribute 'link'

    The beginning steps is OK. But when 'camera_link.link()' fail to execute and I got an error: `--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) in ----> 1 camera_link.link()

    AttributeError: 'directional_link' object has no attribute 'link'`

    Don't know what is the reason.

    opened by watershade 0
Releases(v0.0.0)
Owner
NVIDIA AI IOT
NVIDIA AI IOT
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022