An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Overview

Deep-motion-editing

Python Pytorch Blender

This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The code contains end-to-end modules, from reading and editing animation files to visualizing and rendering (using Blender) them.

The main deep editing operations provided here, motion retargeting and motion style transfer, are based on two works published in SIGGRAPH 2020:

Skeleton-Aware Networks for Deep Motion Retargeting: Project | Paper | Video


Unpaired Motion Style Transfer from Video to Animation: Project | Paper | Video


This library is written and maintained by Kfir Aberman, Peizhuo Li and Yijia Weng. The library is still under development.

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Quick Start

We provide pretrained models together with demo examples using animation files specified in bvh format.

Motion Retargeting

Download and extract the test dataset from Google Drive or Baidu Disk (ye1q). Then place the Mixamo directory within retargeting/datasets.

To generate the demo examples with the pretrained model, run

cd retargeting
sh demo.sh

The results will be saved in retargeting/examples.

To reconstruct the quantitative result with the pretrained model, run

cd retargeting
python test.py

The retargeted demo results, that consists both intra-structual retargeting and cross-structural retargeting, will be saved in retargeting/pretrained/results.

Motion Style Transfer

To receive the demo examples, simply run

sh style_transfer/demo.sh

The results will be saved in style_transfer/demo_results, where each folder contains the raw output raw.bvh and the output after footskate clean-up fixed.bvh.

Train from scratch

We provide instructions for retraining our models

Motion Retargeting

Dataset

We use Mixamo dataset to train our model. You can download our preprocessed data from Google Drive or Baidu Disk(4rgv). Then place the Mixamo directory within retargeting/datasets.

Otherwise, if you want to download Mixamo dataset or use your own dataset, please follow the instructions below. Unless specifically mentioned, all script should be run in retargeting directory.

  • To download Mixamo on your own, you can refer to this good tutorial. You will need to download as fbx file (skin is not required) and make a subdirectory for each character in retargeting/datasets/Mixamo. In our original implementation we download 60fps fbx files and downsample them into 30fps. Since we use an unpaired way in training, it is recommended to divide all motions into two equal size sets for each group and equal size sets for each character in each group. If you use your own data, you need to make sure that your dataset consists of bvh files with same t-pose. You should also put your dataset in subdirectories of retargeting/datasets/Mixamo.

  • Enter retargeting/datasets directory and run blender -b -P fbx2bvh.py to convert fbx files to bvh files. If you already have bvh file as dataset, please skil this step.

  • In our original implementation, we manually split three joints for skeletons in group A. If you want to follow our routine, run python datasets/split_joint.py. This step is optional.

  • Run python datasets/preprocess.py to simplify the skeleton by removing some less interesting joints, e.g. fingers and convert bvh files into npy files. If you use your own data, you'll need to define simplified structure in retargeting/datasets/bvh_parser.py. This information currently is hard-coded in the code. See the comment in source file for more details. There are four steps to make your own dataset work.

  • Training and testing character are hard-coded in retargeting/datasets/__init__.py. You'll need to modify it if you want to use your own dataset.

Train

After preparing dataset, simply run

cd retargeting
python train.py --save_dir=./training/

It will use default hyper-parameters to train the model and save trained model in retargeting/training directory. More options are available in retargeting/option_parser.py. You can use tensorboard to monitor the training progress by running

tensorboard --logdir=./retargeting/training/logs/

Motion Style Transfer

Dataset

  • Download the dataset from Google Drive or Baidu Drive (zzck). The dataset consists of two parts: one is the taken from the motion style transfer dataset proposed by Xia et al. and the other is our BFA dataset, where both parts contain .bvh files retargeted to the standard skeleton of CMU mocap dataset.

  • Extract the .zip files into style_transfer/data

  • Pre-process data for training:

    cd style_transfer/data_proc
    sh gen_dataset.sh

    This will produce xia.npz, bfa.npz in style_transfer/data.

Train

After downloading the dataset simply run

python style_transfer/train.py

Style from videos

To run our models in test time with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Blender Visualization

We provide a simple wrapper of blender's python API (2.80) for rendering 3D animations.

Prerequisites

The Blender releases distributed from blender.org include a complete Python installation across all platforms, which means that any extensions you have installed in your systems Python won’t appear in Blender.

To use external python libraries, you can install new packages directly to Blender's python distribution. Alternatively, you can change the default blender python interpreter by:

  1. Remove the built-in python directory: [blender_path]/2.80/python.

  2. Make a symbolic link or simply copy a python interpreter at [blender_path]/2.80/python. E.g. ln -s ~/anaconda3/envs/env_name [blender_path]/2.80/python

This interpreter should be python 3.7.x version and contains at least: numpy, scipy.

Usage

Arguments

Due to blender's argparse system, the argument list should be separated from the python file with an extra '--', for example:

blender -P render.py -- --arg1 [ARG1] --arg2 [ARG2]

engine: "cycles" or "eevee". Please refer to Render section for more details.

render: 0 or 1. If set to 1, the data will be rendered outside blender's GUI. It is recommended to use render = 0 in case you need to manually adjust the camera.

The full parameters list can be displayed by: blender -P render.py -- -h

Load bvh File (load_bvh.py)

To load example.bvh, run blender -P load_bvh.py. Please finish the preparation first.

Note that currently it uses primitive_cone with 5 vertices for limbs.

Note that Blender and bvh file have different xyz-coordinate systems. In bvh file, the "height" axis is y-axis while in blender it's z-axis. load_bvh.py swaps the axis in the BVH_file class initialization funtion.

Currently all the End Sites in bvh file are discarded, this is because of the out-side code used in utils/.

After loading the bvh file, it's height is normalized to 10.

Material, Texture, Light and Camera (scene.py)

This file enables to add a checkerboard floor, camera, a "sun" to the scene and to apply a basic color material to character.

The floor is placed at y=0, and should be corrected manually in case that it is needed (depends on the character parametes in the bvh file).

Rendering

We support 2 render engines provided in Blender 2.80: Eevee and Cycles, where the trade-off is between speed and quality.

Eevee (left) is a fast, real-time, render engine provides limited quality, while Cycles (right) is a slower, unbiased, ray-tracing render engine provides photo-level rendering result. Cycles also supports CUDA and OpenGL acceleration.

Skinning

Automatic Skinning

We provide a blender script that applies "skinning" to the output skeletons. You first need to download the fbx file which corresponds to the targeted character (for example, "mousey"). Then, you can get a skinned animation by simply run

blender -P blender_rendering/skinning.py -- --bvh_file [bvh file path] --fbx_file [fbx file path]

Note that the script might not work well for all the fbx and bvh files. If it fails, you can try to tweak the script or follow the manual skinning guideline below.

Manual Skinning

Here we provide a "quick and dirty" guideline for how to apply skin to the resulting bvh files, with blender:

  • Download the fbx file that corresponds to the retargeted character (for example, "mousey")
  • Import the fbx file to blender (uncheck the "import animation" option)
  • Merge meshes - select all the parts and merge them (ctrl+J)
  • Import the retargeted bvh file
  • Click "context" (menu bar) -> "Rest Position" (under sekeleton)
  • Manually align the mesh and the skeleton (rotation + translation)
  • Select the skeleton and the mesh (the skeleton object should be highlighted)
  • Click Object -> Parent -> with automatic weights (or Ctrl+P)

Now the skeleton and the skin are bound and the animation can be rendered.

Acknowledgments

The code in the utils directory is mostly taken from Holden et al. [2016].
In addition, part of the MoCap dataset is taken from Adobe Mixamo and from the work of Xia et al..

Citation

If you use this code for your research, please cite our papers:

@article{aberman2020skeleton,
  author = {Aberman, Kfir and Li, Peizhuo and Sorkine-Hornung Olga and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Skeleton-Aware Networks for Deep Motion Retargeting},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {62},
  year = {2020},
  publisher = {ACM}
}

and

@article{aberman2020unpaired,
  author = {Aberman, Kfir and Weng, Yijia and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Unpaired Motion Style Transfer from Video to Animation},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {64},
  year = {2020},
  publisher = {ACM}
}
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021