An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Overview

Deep-motion-editing

Python Pytorch Blender

This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The code contains end-to-end modules, from reading and editing animation files to visualizing and rendering (using Blender) them.

The main deep editing operations provided here, motion retargeting and motion style transfer, are based on two works published in SIGGRAPH 2020:

Skeleton-Aware Networks for Deep Motion Retargeting: Project | Paper | Video


Unpaired Motion Style Transfer from Video to Animation: Project | Paper | Video


This library is written and maintained by Kfir Aberman, Peizhuo Li and Yijia Weng. The library is still under development.

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Quick Start

We provide pretrained models together with demo examples using animation files specified in bvh format.

Motion Retargeting

Download and extract the test dataset from Google Drive or Baidu Disk (ye1q). Then place the Mixamo directory within retargeting/datasets.

To generate the demo examples with the pretrained model, run

cd retargeting
sh demo.sh

The results will be saved in retargeting/examples.

To reconstruct the quantitative result with the pretrained model, run

cd retargeting
python test.py

The retargeted demo results, that consists both intra-structual retargeting and cross-structural retargeting, will be saved in retargeting/pretrained/results.

Motion Style Transfer

To receive the demo examples, simply run

sh style_transfer/demo.sh

The results will be saved in style_transfer/demo_results, where each folder contains the raw output raw.bvh and the output after footskate clean-up fixed.bvh.

Train from scratch

We provide instructions for retraining our models

Motion Retargeting

Dataset

We use Mixamo dataset to train our model. You can download our preprocessed data from Google Drive or Baidu Disk(4rgv). Then place the Mixamo directory within retargeting/datasets.

Otherwise, if you want to download Mixamo dataset or use your own dataset, please follow the instructions below. Unless specifically mentioned, all script should be run in retargeting directory.

  • To download Mixamo on your own, you can refer to this good tutorial. You will need to download as fbx file (skin is not required) and make a subdirectory for each character in retargeting/datasets/Mixamo. In our original implementation we download 60fps fbx files and downsample them into 30fps. Since we use an unpaired way in training, it is recommended to divide all motions into two equal size sets for each group and equal size sets for each character in each group. If you use your own data, you need to make sure that your dataset consists of bvh files with same t-pose. You should also put your dataset in subdirectories of retargeting/datasets/Mixamo.

  • Enter retargeting/datasets directory and run blender -b -P fbx2bvh.py to convert fbx files to bvh files. If you already have bvh file as dataset, please skil this step.

  • In our original implementation, we manually split three joints for skeletons in group A. If you want to follow our routine, run python datasets/split_joint.py. This step is optional.

  • Run python datasets/preprocess.py to simplify the skeleton by removing some less interesting joints, e.g. fingers and convert bvh files into npy files. If you use your own data, you'll need to define simplified structure in retargeting/datasets/bvh_parser.py. This information currently is hard-coded in the code. See the comment in source file for more details. There are four steps to make your own dataset work.

  • Training and testing character are hard-coded in retargeting/datasets/__init__.py. You'll need to modify it if you want to use your own dataset.

Train

After preparing dataset, simply run

cd retargeting
python train.py --save_dir=./training/

It will use default hyper-parameters to train the model and save trained model in retargeting/training directory. More options are available in retargeting/option_parser.py. You can use tensorboard to monitor the training progress by running

tensorboard --logdir=./retargeting/training/logs/

Motion Style Transfer

Dataset

  • Download the dataset from Google Drive or Baidu Drive (zzck). The dataset consists of two parts: one is the taken from the motion style transfer dataset proposed by Xia et al. and the other is our BFA dataset, where both parts contain .bvh files retargeted to the standard skeleton of CMU mocap dataset.

  • Extract the .zip files into style_transfer/data

  • Pre-process data for training:

    cd style_transfer/data_proc
    sh gen_dataset.sh

    This will produce xia.npz, bfa.npz in style_transfer/data.

Train

After downloading the dataset simply run

python style_transfer/train.py

Style from videos

To run our models in test time with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Blender Visualization

We provide a simple wrapper of blender's python API (2.80) for rendering 3D animations.

Prerequisites

The Blender releases distributed from blender.org include a complete Python installation across all platforms, which means that any extensions you have installed in your systems Python won’t appear in Blender.

To use external python libraries, you can install new packages directly to Blender's python distribution. Alternatively, you can change the default blender python interpreter by:

  1. Remove the built-in python directory: [blender_path]/2.80/python.

  2. Make a symbolic link or simply copy a python interpreter at [blender_path]/2.80/python. E.g. ln -s ~/anaconda3/envs/env_name [blender_path]/2.80/python

This interpreter should be python 3.7.x version and contains at least: numpy, scipy.

Usage

Arguments

Due to blender's argparse system, the argument list should be separated from the python file with an extra '--', for example:

blender -P render.py -- --arg1 [ARG1] --arg2 [ARG2]

engine: "cycles" or "eevee". Please refer to Render section for more details.

render: 0 or 1. If set to 1, the data will be rendered outside blender's GUI. It is recommended to use render = 0 in case you need to manually adjust the camera.

The full parameters list can be displayed by: blender -P render.py -- -h

Load bvh File (load_bvh.py)

To load example.bvh, run blender -P load_bvh.py. Please finish the preparation first.

Note that currently it uses primitive_cone with 5 vertices for limbs.

Note that Blender and bvh file have different xyz-coordinate systems. In bvh file, the "height" axis is y-axis while in blender it's z-axis. load_bvh.py swaps the axis in the BVH_file class initialization funtion.

Currently all the End Sites in bvh file are discarded, this is because of the out-side code used in utils/.

After loading the bvh file, it's height is normalized to 10.

Material, Texture, Light and Camera (scene.py)

This file enables to add a checkerboard floor, camera, a "sun" to the scene and to apply a basic color material to character.

The floor is placed at y=0, and should be corrected manually in case that it is needed (depends on the character parametes in the bvh file).

Rendering

We support 2 render engines provided in Blender 2.80: Eevee and Cycles, where the trade-off is between speed and quality.

Eevee (left) is a fast, real-time, render engine provides limited quality, while Cycles (right) is a slower, unbiased, ray-tracing render engine provides photo-level rendering result. Cycles also supports CUDA and OpenGL acceleration.

Skinning

Automatic Skinning

We provide a blender script that applies "skinning" to the output skeletons. You first need to download the fbx file which corresponds to the targeted character (for example, "mousey"). Then, you can get a skinned animation by simply run

blender -P blender_rendering/skinning.py -- --bvh_file [bvh file path] --fbx_file [fbx file path]

Note that the script might not work well for all the fbx and bvh files. If it fails, you can try to tweak the script or follow the manual skinning guideline below.

Manual Skinning

Here we provide a "quick and dirty" guideline for how to apply skin to the resulting bvh files, with blender:

  • Download the fbx file that corresponds to the retargeted character (for example, "mousey")
  • Import the fbx file to blender (uncheck the "import animation" option)
  • Merge meshes - select all the parts and merge them (ctrl+J)
  • Import the retargeted bvh file
  • Click "context" (menu bar) -> "Rest Position" (under sekeleton)
  • Manually align the mesh and the skeleton (rotation + translation)
  • Select the skeleton and the mesh (the skeleton object should be highlighted)
  • Click Object -> Parent -> with automatic weights (or Ctrl+P)

Now the skeleton and the skin are bound and the animation can be rendered.

Acknowledgments

The code in the utils directory is mostly taken from Holden et al. [2016].
In addition, part of the MoCap dataset is taken from Adobe Mixamo and from the work of Xia et al..

Citation

If you use this code for your research, please cite our papers:

@article{aberman2020skeleton,
  author = {Aberman, Kfir and Li, Peizhuo and Sorkine-Hornung Olga and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Skeleton-Aware Networks for Deep Motion Retargeting},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {62},
  year = {2020},
  publisher = {ACM}
}

and

@article{aberman2020unpaired,
  author = {Aberman, Kfir and Weng, Yijia and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Unpaired Motion Style Transfer from Video to Animation},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {64},
  year = {2020},
  publisher = {ACM}
}
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022