An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Overview

Deep-motion-editing

Python Pytorch Blender

This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The code contains end-to-end modules, from reading and editing animation files to visualizing and rendering (using Blender) them.

The main deep editing operations provided here, motion retargeting and motion style transfer, are based on two works published in SIGGRAPH 2020:

Skeleton-Aware Networks for Deep Motion Retargeting: Project | Paper | Video


Unpaired Motion Style Transfer from Video to Animation: Project | Paper | Video


This library is written and maintained by Kfir Aberman, Peizhuo Li and Yijia Weng. The library is still under development.

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Quick Start

We provide pretrained models together with demo examples using animation files specified in bvh format.

Motion Retargeting

Download and extract the test dataset from Google Drive or Baidu Disk (ye1q). Then place the Mixamo directory within retargeting/datasets.

To generate the demo examples with the pretrained model, run

cd retargeting
sh demo.sh

The results will be saved in retargeting/examples.

To reconstruct the quantitative result with the pretrained model, run

cd retargeting
python test.py

The retargeted demo results, that consists both intra-structual retargeting and cross-structural retargeting, will be saved in retargeting/pretrained/results.

Motion Style Transfer

To receive the demo examples, simply run

sh style_transfer/demo.sh

The results will be saved in style_transfer/demo_results, where each folder contains the raw output raw.bvh and the output after footskate clean-up fixed.bvh.

Train from scratch

We provide instructions for retraining our models

Motion Retargeting

Dataset

We use Mixamo dataset to train our model. You can download our preprocessed data from Google Drive or Baidu Disk(4rgv). Then place the Mixamo directory within retargeting/datasets.

Otherwise, if you want to download Mixamo dataset or use your own dataset, please follow the instructions below. Unless specifically mentioned, all script should be run in retargeting directory.

  • To download Mixamo on your own, you can refer to this good tutorial. You will need to download as fbx file (skin is not required) and make a subdirectory for each character in retargeting/datasets/Mixamo. In our original implementation we download 60fps fbx files and downsample them into 30fps. Since we use an unpaired way in training, it is recommended to divide all motions into two equal size sets for each group and equal size sets for each character in each group. If you use your own data, you need to make sure that your dataset consists of bvh files with same t-pose. You should also put your dataset in subdirectories of retargeting/datasets/Mixamo.

  • Enter retargeting/datasets directory and run blender -b -P fbx2bvh.py to convert fbx files to bvh files. If you already have bvh file as dataset, please skil this step.

  • In our original implementation, we manually split three joints for skeletons in group A. If you want to follow our routine, run python datasets/split_joint.py. This step is optional.

  • Run python datasets/preprocess.py to simplify the skeleton by removing some less interesting joints, e.g. fingers and convert bvh files into npy files. If you use your own data, you'll need to define simplified structure in retargeting/datasets/bvh_parser.py. This information currently is hard-coded in the code. See the comment in source file for more details. There are four steps to make your own dataset work.

  • Training and testing character are hard-coded in retargeting/datasets/__init__.py. You'll need to modify it if you want to use your own dataset.

Train

After preparing dataset, simply run

cd retargeting
python train.py --save_dir=./training/

It will use default hyper-parameters to train the model and save trained model in retargeting/training directory. More options are available in retargeting/option_parser.py. You can use tensorboard to monitor the training progress by running

tensorboard --logdir=./retargeting/training/logs/

Motion Style Transfer

Dataset

  • Download the dataset from Google Drive or Baidu Drive (zzck). The dataset consists of two parts: one is the taken from the motion style transfer dataset proposed by Xia et al. and the other is our BFA dataset, where both parts contain .bvh files retargeted to the standard skeleton of CMU mocap dataset.

  • Extract the .zip files into style_transfer/data

  • Pre-process data for training:

    cd style_transfer/data_proc
    sh gen_dataset.sh

    This will produce xia.npz, bfa.npz in style_transfer/data.

Train

After downloading the dataset simply run

python style_transfer/train.py

Style from videos

To run our models in test time with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Blender Visualization

We provide a simple wrapper of blender's python API (2.80) for rendering 3D animations.

Prerequisites

The Blender releases distributed from blender.org include a complete Python installation across all platforms, which means that any extensions you have installed in your systems Python won’t appear in Blender.

To use external python libraries, you can install new packages directly to Blender's python distribution. Alternatively, you can change the default blender python interpreter by:

  1. Remove the built-in python directory: [blender_path]/2.80/python.

  2. Make a symbolic link or simply copy a python interpreter at [blender_path]/2.80/python. E.g. ln -s ~/anaconda3/envs/env_name [blender_path]/2.80/python

This interpreter should be python 3.7.x version and contains at least: numpy, scipy.

Usage

Arguments

Due to blender's argparse system, the argument list should be separated from the python file with an extra '--', for example:

blender -P render.py -- --arg1 [ARG1] --arg2 [ARG2]

engine: "cycles" or "eevee". Please refer to Render section for more details.

render: 0 or 1. If set to 1, the data will be rendered outside blender's GUI. It is recommended to use render = 0 in case you need to manually adjust the camera.

The full parameters list can be displayed by: blender -P render.py -- -h

Load bvh File (load_bvh.py)

To load example.bvh, run blender -P load_bvh.py. Please finish the preparation first.

Note that currently it uses primitive_cone with 5 vertices for limbs.

Note that Blender and bvh file have different xyz-coordinate systems. In bvh file, the "height" axis is y-axis while in blender it's z-axis. load_bvh.py swaps the axis in the BVH_file class initialization funtion.

Currently all the End Sites in bvh file are discarded, this is because of the out-side code used in utils/.

After loading the bvh file, it's height is normalized to 10.

Material, Texture, Light and Camera (scene.py)

This file enables to add a checkerboard floor, camera, a "sun" to the scene and to apply a basic color material to character.

The floor is placed at y=0, and should be corrected manually in case that it is needed (depends on the character parametes in the bvh file).

Rendering

We support 2 render engines provided in Blender 2.80: Eevee and Cycles, where the trade-off is between speed and quality.

Eevee (left) is a fast, real-time, render engine provides limited quality, while Cycles (right) is a slower, unbiased, ray-tracing render engine provides photo-level rendering result. Cycles also supports CUDA and OpenGL acceleration.

Skinning

Automatic Skinning

We provide a blender script that applies "skinning" to the output skeletons. You first need to download the fbx file which corresponds to the targeted character (for example, "mousey"). Then, you can get a skinned animation by simply run

blender -P blender_rendering/skinning.py -- --bvh_file [bvh file path] --fbx_file [fbx file path]

Note that the script might not work well for all the fbx and bvh files. If it fails, you can try to tweak the script or follow the manual skinning guideline below.

Manual Skinning

Here we provide a "quick and dirty" guideline for how to apply skin to the resulting bvh files, with blender:

  • Download the fbx file that corresponds to the retargeted character (for example, "mousey")
  • Import the fbx file to blender (uncheck the "import animation" option)
  • Merge meshes - select all the parts and merge them (ctrl+J)
  • Import the retargeted bvh file
  • Click "context" (menu bar) -> "Rest Position" (under sekeleton)
  • Manually align the mesh and the skeleton (rotation + translation)
  • Select the skeleton and the mesh (the skeleton object should be highlighted)
  • Click Object -> Parent -> with automatic weights (or Ctrl+P)

Now the skeleton and the skin are bound and the animation can be rendered.

Acknowledgments

The code in the utils directory is mostly taken from Holden et al. [2016].
In addition, part of the MoCap dataset is taken from Adobe Mixamo and from the work of Xia et al..

Citation

If you use this code for your research, please cite our papers:

@article{aberman2020skeleton,
  author = {Aberman, Kfir and Li, Peizhuo and Sorkine-Hornung Olga and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Skeleton-Aware Networks for Deep Motion Retargeting},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {62},
  year = {2020},
  publisher = {ACM}
}

and

@article{aberman2020unpaired,
  author = {Aberman, Kfir and Weng, Yijia and Lischinski, Dani and Cohen-Or, Daniel and Chen, Baoquan},
  title = {Unpaired Motion Style Transfer from Video to Animation},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {39},
  number = {4},
  pages = {64},
  year = {2020},
  publisher = {ACM}
}
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022