DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Overview


English | 简体中文

Introduction

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Reference PatchCore anomaly detection model

plot

Major features
  • Using nominal (non-defective) example images only

  • Faiss(CPU/GPU)

  • TensorRT Deployment

Installation

$ git clone https://github.com/tbcvContributor/DeepHawkeye.git
$ pip install opencv-python
$ pip install scipy

# pytorch
$ pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html


#install faiss
# CPU-only version(currently available on Linux, OSX, and Windows)
$ conda install -c pytorch faiss-cpu
# GPU(+CPU) version (containing both CPU and GPU indices, is available on Linux systems)
$ conda install -c pytorch faiss-gpu
# or for a specific CUDA version
$ conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2 

Checkpoints and Demo data

Wide ResNet-50-2 and demo data

[Google]

[Baidu],code:a14e

${ROOT}
   └——————weights
           └——————wide_r50_2.pth
   └——————demo_data
           └——————grid
                    └——————normal_data
                    └——————test_data
           └——————....

Demo

bulid normal lib
python demo_train.py -d ./demo_data/grid/normal_data -c grid
pytorch infer
python demo_test.py -d ./demo_data/grid/test_data -c grid
tensorrt infer
python demo_trt.py -d ./demo_data/grid/test_data -c grid -t ./weights/w_res_50.trt

Tutorials

  • Need normal example images to cover all scenarios as much as possible

  • Faiss Documentation Default IVFXX, PQ16

train args
def get_train_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d','--total_img_paths',type=str, default=None)
    parser.add_argument('-c','--category',type=str, default=None)
    parser.add_argument('--batch_size', default=64)
    parser.add_argument('--embedding_layers',choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--max_cluster_image_num', default=1000,help='depend on CPU memory, more than total images number')
    parser.add_argument('--index_build_device', default=-1,help='CPU:-1 ,GPU number eg: 0, 1, 2 (only on Linux)')

tips:

--input_size: trade off between speed and accuracy of the result --max_cluster_image_num:If RAM allows, greater than or equal to the total number of samples

test args
def get_test_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--test_path', type=str, default=None)
    parser.add_argument('-c', '--category', type=str, default=None)
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--test_batch_size', default=64)
    parser.add_argument('--embedding_layers', choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--test_GPU', default=-1, help='CPU:-1,'
                                                       'GPU: num eg: 0, 1, 2'
                                                       'multi_GPUs:[0,1,...]')
    parser.add_argument('--save_heat_map_image', default=True)
    parser.add_argument('--heatmap_save_path',
                        default=fr'./results', help='heatmap save path')
    parser.add_argument('--threshold', default=2)
    parser.add_argument('--nprobe', default=10)
    parser.add_argument('--n_neighbors', type=int, default=5)
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")

tips:

--threshold: depend on scores of anomaly data

result format:{filename}_{score}.jpg

License

This project is released under the Apache 2.0 license.

Code Reference

https://github.com/hcw-00/PatchCore_anomaly_detection embedding concat function : https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
CV Newbie
CV Newbie
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022