AI-based, context-driven network device ranking

Related tags

Deep Learningbatea
Overview

Python package

logo

Batea

A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets.

Batea is a context-driven network device ranking framework based on the anomaly detection family of machine learning algorithms. The goal of Batea is to allow security teams to automatically filter interesting network assets in large networks using nmap scan reports. We call those Gold Nuggets.

For more information about Gold Nuggeting and the science behind Batea, check out our whitepaper here

You can try Batea on your nmap scan data without downloading the software, using Batea Live: https://batea.delvesecurity.com/

How it works

Batea works by constructing a numerical representation (numpy) of all devices from your nmap reports (XML) and then applying anomaly detection methods to uncover the gold nuggets. It is easily extendable by adding specific features, or interesting characteristics, to the numerical representation of the network elements.

The numerical representation of the network is constructed using features, which are inspired by the expertise of the security community. The features act as elements of intuition, and the unsupervised anomaly detection methods allow the context of the network asset, or the total description of the network, to be used as the central building block of the ranking algorithm. The exact algorithm used is Isolation Forest (https://en.wikipedia.org/wiki/Isolation_forest)

Machine learning models are the heart of Batea. Models are algorithms trained on the whole dataset and used to predict a score on the same (and other) data points (network devices). Batea also allows for model persistence. That is, you can re-use pretrained models and export models trained on large datasets for further use.

Usage

# Complete info
$ sudo nmap -A 192.168.0.0/16 -oX output.xml

# Partial info
$ sudo nmap -O -sV 192.168.0.0/16 -oX output.xml


$ batea -v output.xml

Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 setup.py sdist
$ pip3 install -r requirements.txt
$ pip3 install -e .

Developers Installation

$ git clone [email protected]:delvelabs/batea.git
$ cd batea
$ python3 -m venv batea/
$ source batea/bin/activate
$ python3 setup.py sdist
$ pip3 install -r requirements-dev.txt
$ pip3 install -e .
$ pytest

Example usage

# simple use (output top 5 gold nuggets with default format)
$ batea nmap_report.xml

# Output top 3
$ batea -n 3 nmap_report.xml

# Output all assets
$ batea -A nmap_report.xml

# Using multiple input files
$ batea -A nmap_report1.xml nmap_report2.xml

# Using wildcards (default xsl)
$ batea ./nmap*.xml
$ batea -f csv ./assets*.csv

# You can use batea on pretrained models and export trained models.

# Training, output and dumping model for persistence
$ batea -D mymodel.batea nmap_report.xml

# Using pretrained model
$ batea -L mymodel.batea nmap_report.xml

# Using preformatted csv along with xml files
$ batea -x nmap_report.xml -c portscan_data.csv

# Adjust verbosity
$ batea -vv nmap_report.xml

How to add a feature

Batea works by assigning numerical features to every host in the report (or series of report). Hosts are python objects derived from the nmap report. They consist of the following list of attributes: [ipv4, hostname, os_info, ports] where ports is a list of ports objects. Each port has the following list of attributes : [port, protocol, state, service, software, version, cpe, scripts], all defaulting to None.

Features are objects inherited from the FeatureBase class that instantiate a specific _transform method. This method always takes the list of all hosts as input and returns a lambda function that maps each host to a numpy column of numeric values (host order is conserved). The column is then appended to the matrix representation of the report. Features must output correct numerical values (floats or integers) and nothing else.

Most feature transformations are implemented using a simple lambda function. Just make sure to default a numeric value to every host for model compatibility.

Ex:

class CustomInterestingPorts(FeatureBase):
    def __init__(self):
        super().__init__(name="some_custom_interesting_ports")

    def _transform(self, hosts):
      """This method takes a list of hosts and returns a function that counts the number
      of host ports member from a predefined list of "interesting" ports, defaulting to 0.

      Parameters
      ----------
      hosts : list
          The list of all hosts

      Returns
      -------
      f : lambda function
          Counts the number of ports in the defined list.
      """
        member_ports = [21, 22, 25, 8080, 8081, 1234]
        f = lambda host: len([port for port in host.ports if port.port in member_ports])
        return f

You can then add the feature to the report by using the NmapReport.add_feature method in batea/__init__.py

from .features.basic_features import CustomInterestingPorts

def build_report():
    report = NmapReport()
    #[...]
    report.add_feature(CustomInterestingPorts())

    return report

Using precomputed tabular data (CSV)

It is possible to use preprocessed data to train the model or for prediction. The data has to be indexed by (ipv4, port) with one unique combination per row. The type of data should be close to what you expect from the XML version of an nmap report. A column has to use one of the following names, but you don't have to use all of them. The parser defaults to null values if a column is absent.

  'ipv4',
  'hostname',
  'os_name',
  'port',
  'state',
  'protocol',
  'service',
  'software_banner',
  'version',
  'cpe',
  'other_info'

Example:

ipv4,hostname,os_name,port,state,protocol,service,software_banner
10.251.53.100,internal.delvesecurity.com,Linux,110,open,tcp,rpcbind,"program version   port/proto  service100000  2,3,4        111/tcp  rpcbind100000  2,3,4    "
10.251.53.100,internal.delvesecurity.com,Linux,111,open,tcp,rpcbind,
10.251.53.188,serious.delvesecurity.com,Linux,6000,open,tcp,X11,"X11Probe: CentOS"

Outputing numerical representation

For the data scientist in you, or just for fun and profit, you can output the numerical matrix along with the score column instead of the regular output. This can be useful for further data analysis and debug purpose.

$ batea -oM network_matrix nmap_report.xml
Owner
Secureworks Taegis VDR
Automatically identify and prioritize vulnerabilities for intelligent remediation.
Secureworks Taegis VDR
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

42 Nov 25, 2022