Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Overview

Highly interpretable, sklearn-compatible classifier based on decision rules

This is a scikit-learn compatible wrapper for the Bayesian Rule List classifier developed by Letham et al., 2015 (see Letham's original code), extended by a minimum description length-based discretizer (Fayyad & Irani, 1993) for continuous data, and by an approach to subsample large datasets for better performance.

It produces rule lists, which makes trained classifiers easily interpretable to human experts, and is competitive with state of the art classifiers such as random forests or SVMs.

For example, an easily understood Rule List model of the well-known Titanic dataset:

IF male AND adult THEN survival probability: 21% (19% - 23%)
ELSE IF 3rd class THEN survival probability: 44% (38% - 51%)
ELSE IF 1st class THEN survival probability: 96% (92% - 99%)
ELSE survival probability: 88% (82% - 94%)

Letham et al.'s approach only works on discrete data. However, this approach can still be used on continuous data after discretization. The RuleListClassifier class also includes a discretizer that can deal with continuous data (using Fayyad & Irani's minimum description length principle criterion, based on an implementation by navicto).

The inference procedure is slow on large datasets. If you have more than a few thousand data points, and only numeric data, try the included BigDataRuleListClassifier(training_subset=0.1), which first determines a small subset of the training data that is most critical in defining a decision boundary (the data points that are hardest to classify) and learns a rule list only on this subset (you can specify which estimator to use for judging which subset is hardest to classify by passing any sklearn-compatible estimator in the subset_estimator parameter - see examples/diabetes_bigdata_demo.py).

Usage

The project requires pyFIM, scikit-learn, and pandas to run.

The included RuleListClassifier works as a scikit-learn estimator, with a model.fit(X,y) method which takes training data X (numpy array or pandas DataFrame; continuous, categorical or mixed data) and labels y.

The learned rules of a trained model can be displayed simply by casting the object as a string, e.g. print model, or by using the model.tostring(decimals=1) method and optionally specifying the rounding precision.

Numerical data in X is automatically discretized. To prevent discretization (e.g. to protect columns containing categorical data represented as integers), pass the list of protected column names in the fit method, e.g. model.fit(X,y,undiscretized_features=['CAT_COLUMN_NAME']) (entries in undiscretized columns will be converted to strings and used as categorical values - see examples/hepatitis_mixeddata_demo.py).

Usage example:

from RuleListClassifier import *
from sklearn.datasets.mldata import fetch_mldata
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier

feature_labels = ["#Pregnant","Glucose concentration test","Blood pressure(mmHg)","Triceps skin fold thickness(mm)","2-Hour serum insulin (mu U/ml)","Body mass index","Diabetes pedigree function","Age (years)"]
    
data = fetch_mldata("diabetes") # get dataset
y = (data.target+1)/2 # target labels (0 or 1)
Xtrain, Xtest, ytrain, ytest = train_test_split(data.data, y) # split

# train classifier (allow more iterations for better accuracy; use BigDataRuleListClassifier for large datasets)
model = RuleListClassifier(max_iter=10000, class1label="diabetes", verbose=False)
model.fit(Xtrain, ytrain, feature_labels=feature_labels)

print "RuleListClassifier Accuracy:", model.score(Xtest, ytest), "Learned interpretable model:\n", model
print "RandomForestClassifier Accuracy:", RandomForestClassifier().fit(Xtrain, ytrain).score(Xtest, ytest)
"""
**Output:**
RuleListClassifier Accuracy: 0.776041666667 Learned interpretable model:
Trained RuleListClassifier for detecting diabetes
==================================================
IF Glucose concentration test : 157.5_to_inf THEN probability of diabetes: 81.1% (72.5%-72.5%)
ELSE IF Body mass index : -inf_to_26.3499995 THEN probability of diabetes: 5.2% (1.9%-1.9%)
ELSE IF Glucose concentration test : -inf_to_103.5 THEN probability of diabetes: 14.4% (8.8%-8.8%)
ELSE IF Age (years) : 27.5_to_inf THEN probability of diabetes: 59.6% (51.8%-51.8%)
ELSE IF Glucose concentration test : 103.5_to_127.5 THEN probability of diabetes: 15.9% (8.0%-8.0%)
ELSE probability of diabetes: 44.7% (29.5%-29.5%)
=================================================

RandomForestClassifier Accuracy: 0.729166666667
"""
Owner
Tamas Madl
Tamas Madl
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Microsoft 5.6k Jan 07, 2023
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022