CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

Overview

SmartSim Example Zoo

This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

The CrayLabs team will attempt to keep examples updated with current releases but all user contibuted examples should specify the release they were created with.

Contibuting Examples

We welcome any and all contibutions to this repository. The CrayLabs team will do their best to review in a timely manner. We ask that, if you contribute examples, please include a description and all references to code and relavent previous implemenations or open source code that the work is based off of for the benefit of anyone who would like to try out your example.

Examples by Paper

The following examples are implemented based on existing research papers. Each example lists the paper, previous works, and links to the implementation (possibly stored within this repository or a seperate repository)

1. DeepDriveMD

  • Contibuting User: CrayLabs
  • Tags: OpenMM, CVAE, online inference, unsupervised online learning, PyTorch, ensemble

This use case highlights many features of SmartSim and SmartRedis and together they can be used to orchestrate complex workflows with coupled applications without using the filesystem for exchanging information.

More specifically, this use case is based on the original DeepDriveMD work. DeepDriveMD was furthered with an asynchronous streaming version. SmartSim extends the streaming implementation through the use of the SmartSim architecture. The main difference between the SmartSim implementation and the previous implementations, is that neither ML models, nor Molecular Dynamics (MD) intermediate results are stored on the file system. Additionally, the inference portion of the workflow takes place inside the database instead of a seperate task launched on the system.

2. TensorFlowFoam

  • Contributing User: CrayLabs
  • Tags: Online Inference, TensorFlow, OpenFOAM, supervised learning

This example shows how to use TensorFlow inside of OpenFOAM simulations using SmartSim.

More specifically, this SmartSim use case adapts the TensorFlowFoam work which utilized a deep neural network to predict steady-state turbulent viscosities of the Spalart-Allmaras (SA) model. This use case highlights that a machine learning model can be evaluated using SmartSim from within a simulation with minimal external library code. For the OpenFOAM use case herein, only four SmartRedis client API calls are needed to initialize a client connection, send tensor data for evaluation, execute the TensorFlow model, and retrieve the model inference result.

In general, this example provides a useful driver script for those looking to run OpenFOAM with SmartSim.

3. ML-EKE

  • Contributing User: CrayLabs
  • Tags: Online inference, MOM6, climate modeling, ensemble, parameterization replacement

This example was a collaboration between CrayLabs (HPE), NCAR, and the university of Victoria. Using SmartSim, this example shows how to run an ensemble of simulations all using the SmartSim architecture to replace a parameterization (MEKE) within each global ocean simulation (MOM6).

Paper Abstract:

We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online inference of Deep Neural Networks (DNN) using SmartSim. SmartSim is a library dedicated to enabling online analysis and Machine Learning (ML) for traditional HPC simulations. In this paper, we detail the SmartSim architecture and provide benchmarks including online inference with a shared ML model on heterogeneous HPC systems. We demonstrate the capability of SmartSim by using it to run a 12-member ensemble of global-scale, high-resolution ocean simulations, each spanning 19 compute nodes, all communicating with the same ML architecture at each simulation timestep. In total, 970 billion inferences are collectively served by running the ensemble for a total of 120 simulated years. Finally, we show our solution is stable over the full duration of the model integrations, and that the inclusion of machine learning has minimal impact on the simulation runtimes.

Since this is original research done by CrayLabs, there is no previous implementation.

Examples by Simulation Model

LAMMPS

SmartSim examples with LAMMPS which is a Molecular Dynamics simulation model.

1. Online Analysis of Atom Position

  • Contibuting User: CrayLabs
  • Tags: Molecular Dynamics, online analysis, visualizations.

LAMMPS has dump styles which are custom I/O methods that can be implmentated by users. CrayLabs implemented a SMARTSIM dump style which uses the SmartRedis clients to stream data to an Orchestrator database created by SmartSim.

Once the data is in the database, any application with a SmartRedis client can consume that data. For this example, we have a simple Python script that uses iPyVolume to plot the data every 100 iterations.

Examples by System

High Performance Computing Systems are a bit like snowflakes, they are all different. Since each one has their own quirks, some examples for specific and popular systems can be of benefit to new users.

National Center for Atmospheric Research (NCAR)

1. Cheyenne

  • Contibuting User: CrayLabs
  • implementation (this repo)
  • WLM: PBSPro
  • System: SGI 8600
  • CPU: intel
  • GPU: None

2. Casper

  • Contibuting user: @jedwards4b
  • Implementation (this repo)
  • WLM: PBSPro
  • GPU: Nvidia
  • CPU: Intel
  • SmartSim Version: 0.3.2
  • SmartRedis Version: 0.2.0

Oak Ridge National Lab

1. Summit

  • Contributing user: CrayLabs
  • implementation (this repo)
  • System:
  • OS: Red Hat Enterprise Linux (RHEL)
  • CPU: Power9
  • GPU: Nvidia V100
Owner
Cray Labs
Cray Labs
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Upgini : data search library for your machine learning pipelines

Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:

Upgini 175 Jan 08, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Management of exclusive GPU access for distributed machine learning workloads

TensorHive is an open source tool for managing computing resources used by multiple users across distributed hosts. It focuses on granting

Paweł Rościszewski 131 Dec 12, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023