ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics.

Overview

ANNchor

A python library implementing ANNchor:
k-nearest neighbour graph construction for slow metrics.

User Guide

For user guide and documentation, go to /doc/_build/index.html



What is ANNchor?

ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics. The k-NN graph is an extremely useful data structure that appears in a wide variety of applications, for example: clustering, dimensionality reduction, visualisation and exploratory data analysis (EDA). However, if we want to use a slow metric, these k-NN graphs can take an exceptionally long time to compute. Typical slow metrics include the Wasserstein metric (Earth Mover's distance) applied to images, and Levenshtein (Edit) distance on long strings, where the time taken to compute these distances is significantly longer than a typical Euclidean distance.

ANNchor uses Machine Learning methods to infer true distances between points in a data set from a variety of features derived from anchor points (aka landmarks/waypoints). In practice, this means that ANNchor does not make as many calls to the underlying metric as other state of the art k-NN graph generation techniques. This translates to quicker run times, especially when the metric is slow.

Results from ANNchor can easily be combined with other popular libraries in the Data Science community. In the docs we give examples of how to use ANNchor in an EDA pipeline alongside UMAP and HDBSCAN.

Installation

Clone this repo and install with pip:

pip install -e annchor/

Basic Usage

import numpy as np
import annchor

X =          #your data, list/np.array of items
distance =   #your distance function, distance(X[i],X[j]) = d

ann = annchor.Annchor(X,
                      distance,
                      n_anchors=15,
                      n_neighbors=15,
                      p_work=0.1)
ann.fit()

print(ann.neighbor_graph)

Examples

We demonstrate ANNchor by example, using Levenshtein distance on a data set of long strings. This data set is bundled with the annchor package for convenience.

Firstly, we import some useful modules and load the data:

import os
import time
import numpy as np

from annchor import Annchor, compare_neighbor_graphs
from annchor.datasets import load_strings

strings_data = load_strings()
X = strings_data['X']
y = strings_data['y']
neighbor_graph = strings_data['neighbor_graph']

nx = X.shape[0]

for x in X[::100]:
    print(x[:50]+'...')
cuiojvfnseoksugfcbwzrcoxtjxrvojrguqttjpeauenefmkmv...
uiofnsosungdgrxiiprvojrgujfdttjioqunknefamhlkyihvx...
cxumzfltweskptzwnlgojkdxidrebonxcmxvbgxayoachwfcsy...
cmjpuuozflodwqvkascdyeosakdupdoeovnbgxpajotahpwaqc...
vzdiefjmblnumdjeetvbvhwgyasygrzhuckvpclnmtviobpzvy...
nziejmbmknuxdhjbgeyvwgasygrhcpdxcgnmtviubjvyzjemll...
yhdpczcjxirmebhfdueskkjjtbclvncxjrstxhqvtoyamaiyyb...
yfhwczcxakdtenvbfctugnkkkjbcvxcxjwfrgcstahaxyiooeb...
yoftbrcmmpngdfzrbyltahrfbtyowpdjrnqlnxncutdovbgabo...
tyoqbywjhdwzoufzrqyltahrefbdzyunpdypdynrmchutdvsbl...
dopgwqjiehqqhmprvhqmnlbpuwszjkjjbshqofaqeoejtcegjt...
rahobdixljmjfysmegdwyzyezulajkzloaxqnipgxhhbyoztzn...
dfgxsltkbpxvgqptghjnkaoofbwqqdnqlbbzjsqubtfwovkbsk...
pjwamicvegedmfetridbijgafupsgieffcwnmgmptjwnmwegvn...
ovitcihpokhyldkuvgahnqnmixsakzbmsipqympnxtucivgqyi...
xvepnposhktvmutozuhkbqarqsbxjrhxuumofmtyaaeesbeuhf...

We see a data set consisting of long strings. A closer inspection may indicate some structure, but it is not obvious at this stage.

We use ANNchor to find the 25-nearest neighbour graph. Levenshtein distance is included in Annchor, and can be called by using the string 'levenshtein' (we could also define the levenshtein function beforehand and pass that to Annchor instead). We will specify that we want to do no more than 12% of the brute force work (since the data set is size 1600, brute force would be 1600x1599/2=1279200 calls to the metric, so we will make around ~153500 to the metric). To get accurate timing information, bear in mind that the first run will be slower than future runs due to the numba.jit compile time.

start_time = time.time()
ann = Annchor(X, 'levenshtein', n_neighbors=25, p_work=0.12)

ann.fit()
print('ANNchor Time: %5.3f seconds' % (time.time()-start_time))


# Test accuracy
error = compare_neighbor_graphs(neighbor_graph,
                                ann.neighbor_graph,
                                k)
print('ANNchor Accuracy: %d incorrect NN pairs (%5.3f%%)' % (error,100*error/(k*nx)))
ANNchor Time: 34.299 seconds
ANNchor Accuracy: 0 incorrect NN pairs (0.000%)

Not bad!

We can continue to use ANNchor in a typical EDA pipeline. Let's find the UMAP projection of our data set:

from umap import UMAP
from matplotlib import pyplot as plt

# Extract the distance matrix
D = ann.to_sparse_matrix()

U = UMAP(metric='precomputed',n_neighbors=k-1)
T = U.fit_transform(D)
# T now holds the 2d UMAP projection of our data

# View the 2D projection with matplotlib
fig,ax = plt.subplots(figsize=(7,7))
ax.scatter(*T.T,alpha=0.1)
plt.show()

Finally the structure of the data set is clear to us! There are 8 clusters of two distinct varieties: filaments and clouds.

More examples can be found in the Examples subfolder. Extra python packages will be required to run the examples. These packages can be installed via:

pip install -r annchor/Examples/requirements.txt
Owner
GCHQ
GCHQ
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
High performance Python GLMs with all the features!

High performance Python GLMs with all the features!

QuantCo 200 Dec 14, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
Time Series Prediction with tf.contrib.timeseries

TensorFlow-Time-Series-Examples Additional examples for TensorFlow Time Series(TFTS). Read a Time Series with TFTS From a Numpy Array: See "test_input

Zhiyuan He 476 Nov 17, 2022
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Microsoft 5.6k Jan 07, 2023
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021