Anomaly Detection and Correlation library

Overview

luminol

Python Versions Build Status

Overview

Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detection and correlation. It can be used to investigate possible causes of anomaly. You collect time series data and Luminol can:

  • Given a time series, detect if the data contains any anomaly and gives you back a time window where the anomaly happened in, a time stamp where the anomaly reaches its severity, and a score indicating how severe is the anomaly compare to others in the time series.
  • Given two time series, help find their correlation coefficient. Since the correlation mechanism allows a shift room, you are able to correlate two peaks that are slightly apart in time.

Luminol is configurable in a sense that you can choose which specific algorithm you want to use for anomaly detection or correlation. In addition, the library does not rely on any predefined threshold on the values of a time series. Instead, it assigns each data point an anomaly score and identifies anomalies using the scores.

By using the library, we can establish a logic flow for root cause analysis. For example, suppose there is a spike in network latency:

  • Anomaly detection discovers the spike in network latency time series
  • Get the anomaly period of the spike, and correlate with other system metrics(GC, IO, CPU, etc.) in the same time range
  • Get a ranked list of correlated metrics, and the root cause candidates are likely to be on the top.

Investigating the possible ways to automate root cause analysis is one of the main reasons we developed this library and it will be a fundamental part of the future work.


Installation

make sure you have python, pip, numpy, and install directly through pip:

pip install luminol

the most up-to-date version of the library is 0.4.


Quick Start

This is a quick start guide for using luminol for time series analysis.

  1. import the library
import luminol
  1. conduct anomaly detection on a single time series ts.
detector = luminol.anomaly_detector.AnomalyDetector(ts)
anomalies = detector.get_anomalies()
  1. if there is anomaly, correlate the first anomaly period with a secondary time series ts2.
if anomalies:
    time_period = anomalies[0].get_time_window()
    correlator = luminol.correlator.Correlator(ts, ts2, time_period)
  1. print the correlation coefficient
print(correlator.get_correlation_result().coefficient)

These are really simple use of luminol. For information about the parameter types, return types and optional parameters, please refer to the API.


Modules

Modules in Luminol refers to customized classes developed for better data representation, which are Anomaly, CorrelationResult and TimeSeries.

Anomaly

class luminol.modules.anomaly.Anomaly
It contains these attributes:

self.start_timestamp: # epoch seconds represents the start of the anomaly period.
self.end_timestamp: # epoch seconds represents the end of the anomaly period.
self.anomaly_score: # a score indicating how severe is this anomaly.
self.exact_timestamp: # epoch seconds indicates when the anomaly reaches its severity.

It has these public methods:

  • get_time_window(): returns a tuple (start_timestamp, end_timestamp).

CorrelationResult

class luminol.modules.correlation_result.CorrelationResult
It contains these attributes:

self.coefficient: # correlation coefficient.
self.shift: # the amount of shift needed to get the above coefficient.
self.shifted_coefficient: # a correlation coefficient with shift taken into account.

TimeSeries

class luminol.modules.time_series.TimeSeries

__init__(self, series)
  • series(dict): timestamp -> value

It has a various handy methods for manipulating time series, including generator iterkeys, itervalues, and iteritems. It also supports binary operations such as add and subtract. Please refer to the code and inline comments for more information.


API

The library contains two classes: AnomalyDetector and Correlator, and there are two sets of APIs, one corresponding to each class. There are also customized modules for better data representation. The Modules section in this documentation may provide useful information as you walk through the APIs.

AnomalyDetector

class luminol.anomaly_detector.AnomalyDetecor

__init__(self, time_series, baseline_time_series=None, score_only=False, score_threshold=None,
         score_percentile_threshold=None, algorithm_name=None, algorithm_params=None,
         refine_algorithm_name=None, refine_algorithm_params=None)
  • time_series: The metric you want to conduct anomaly detection on. It can have the following three types:
1. string: # path to a csv file
2. dict: # timestamp -> value
3. lumnol.modules.time_series.TimeSeries
  • baseline_time_series: an optional baseline time series of one the types mentioned above.
  • score only(bool): if asserted, anomaly scores for the time series will be available, while anomaly periods will not be identified.
  • score_threshold: if passed, anomaly scores above this value will be identified as anomaly. It can override score_percentile_threshold.
  • score_precentile_threshold: if passed, anomaly scores above this percentile will be identified as anomaly. It can not override score_threshold.
  • algorithm_name(string): if passed, the specific algorithm will be used to compute anomaly scores.
  • algorithm_params(dict): additional parameters for algorithm specified by algorithm_name.
  • refine_algorithm_name(string): if passed, the specific algorithm will be used to compute the time stamp of severity within each anomaly period.
  • refine_algorithm_params(dict): additional parameters for algorithm specified by refine_algorithm_params.

Available algorithms and their additional parameters are:

1.  'bitmap_detector': # behaves well for huge data sets, and it is the default detector.
    {
      'precision'(4): # how many sections to categorize values,
      'lag_window_size'(2% of the series length): # lagging window size,
      'future_window_size'(2% of the series length): # future window size,
      'chunk_size'(2): # chunk size.
    }
2.  'default_detector': # used when other algorithms fails, not meant to be explicitly used.
3.  'derivative_detector': # meant to be used when abrupt changes of value are of main interest.
    {
      'smoothing factor'(0.2): # smoothing factor used to compute exponential moving averages
                                # of derivatives.
    }
4.  'exp_avg_detector': # meant to be used when values are in a roughly stationary range.
                        # and it is the default refine algorithm.
    {
      'smoothing factor'(0.2): # smoothing factor used to compute exponential moving averages.
      'lag_window_size'(20% of the series length): # lagging window size.
      'use_lag_window'(False): # if asserted, a lagging window of size lag_window_size will be used.
    }

It may seem vague for the meanings of some parameters above. Here are some useful insights:

The AnomalyDetector class has the following public methods:

  • get_all_scores(): returns an anomaly score time series of type TimeSeries.
  • get_anomalies(): return a list of Anomaly objects.

Correlator

class luminol.correlator.Correlator

__init__(self, time_series_a, time_series_b, time_period=None, use_anomaly_score=False,
         algorithm_name=None, algorithm_params=None)
  • time_series_a: a time series, for its type, please refer to time_series for AnomalyDetector above.
  • time_series_b: a time series, for its type, please refer to time_series for AnomalyDetector above.
  • time_period(tuple): a time period where to correlate the two time series.
  • use_anomaly_score(bool): if asserted, the anomaly scores of the time series will be used to compute correlation coefficient instead of the original data in the time series.
  • algorithm_name: if passed, the specific algorithm will be used to calculate correlation coefficient.
  • algorithm_params: any additional parameters for the algorithm specified by algorithm_name.

Available algorithms and their additional parameters are:

1.  'cross_correlator': # when correlate two time series, it tries to shift the series around so that it
                       # can catch spikes that are slightly apart in time.
    {
      'max_shift_seconds'(60): # maximal allowed shift room in seconds,
      'shift_impact'(0.05): # weight of shift in the shifted coefficient.
    }

The Correlator class has the following public methods:

  • get_correlation_result(): return a CorrelationResult object.
  • is_correlated(threshold=0.7): if coefficient above the passed in threshold, return a CorrelationResult object. Otherwise, return false.

Example

  1. Calculate anomaly scores.
from luminol.anomaly_detector import AnomalyDetector

ts = {0: 0, 1: 0.5, 2: 1, 3: 1, 4: 1, 5: 0, 6: 0, 7: 0, 8: 0}

my_detector = AnomalyDetector(ts)
score = my_detector.get_all_scores()
for timestamp, value in score.iteritems():
    print(timestamp, value)

""" Output:
0 0.0
1 0.873128250131
2 1.57163085024
3 2.13633686334
4 1.70906949067
5 2.90541813415
6 1.17154110935
7 0.937232887479
8 0.749786309983
"""
  1. Correlate ts1 with ts2 on every anomaly.
from luminol.anomaly_detector import AnomalyDetector
from luminol.correlator import Correlator

ts1 = {0: 0, 1: 0.5, 2: 1, 3: 1, 4: 1, 5: 0, 6: 0, 7: 0, 8: 0}
ts2 = {0: 0, 1: 0.5, 2: 1, 3: 0.5, 4: 1, 5: 0, 6: 1, 7: 1, 8: 1}

my_detector = AnomalyDetector(ts1, score_threshold=1.5)
score = my_detector.get_all_scores()
anomalies = my_detector.get_anomalies()
for a in anomalies:
    time_period = a.get_time_window()
    my_correlator = Correlator(ts1, ts2, time_period)
    if my_correlator.is_correlated(threshold=0.8):
        print("ts2 correlate with ts1 at time period (%d, %d)" % time_period)

""" Output:
ts2 correlates with ts1 at time period (2, 5)
"""

Contributing

Clone source and install package and dev requirements:

pip install -r requirements.txt
pip install pytest pytest-cov pylama

Tests and linting run with:

python -m pytest --cov=src/luminol/ src/luminol/tests/
python -m pylama -i E501 src/luminol/
Owner
LinkedIn
LinkedIn
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Interactive Parallel Computing in Python

Interactive Parallel Computing with IPython ipyparallel is the new home of IPython.parallel. ipyparallel is a Python package and collection of CLI scr

IPython 2.3k Dec 30, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
A quick reference guide to the most commonly used patterns and functions in PySpark SQL

Using PySpark we can process data from Hadoop HDFS, AWS S3, and many file systems. PySpark also is used to process real-time data using Streaming and

Sundar Ramamurthy 53 Dec 21, 2022
Programming assignments and quizzes from all courses within the Machine Learning Engineering for Production (MLOps) specialization offered by deeplearning.ai

Machine Learning Engineering for Production (MLOps) Specialization on Coursera (offered by deeplearning.ai) Programming assignments from all courses i

Aman Chadha 173 Jan 05, 2023
Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Priyansh Sharma 7 Nov 09, 2022
PySpark ML Bank Churn Prediction

PySpark-Bank-Churn Surname: corresponds to the record (row) number and has no effect on the output. CreditScore: contains random values and has no eff

kemalgunay 2 Nov 11, 2021
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022