Leaderboard and Visualization for RLCard

Overview

RLCard Showdown

This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to help understand the performance of the agents. It includes a replay module, where you can analyze the replays, and a PvE module, where you can play with the AI interactively. Currently, we only support Leduc Hold'em and Dou Dizhu. The frontend is developed with React. The backend is based on Django and Flask. Have fun!

Cite this work

Zha, Daochen, et al. "RLCard: A Platform for Reinforcement Learning in Card Games." IJCAI. 2020.

@inproceedings{zha2020rlcard,
  title={RLCard: A Platform for Reinforcement Learning in Card Games},
  author={Zha, Daochen and Lai, Kwei-Herng and Huang, Songyi and Cao, Yuanpu and Reddy, Keerthana and Vargas, Juan and Nguyen, Alex and Wei, Ruzhe and Guo, Junyu and Hu, Xia},
  booktitle={IJCAI},
  year={2020}
}

Installation

RLCard-Showdown has separated frontend and backend. The frontend is built with React and the backend is based on Django and Flask.

Prerequisite

To set up the frontend, you should make sure you have Node.js and NPM installed. Normally you just need to manually install Node.js, and the NPM package would be automatically installed together with Node.js for you. Please refer to its official website for installation of Node.js.

You can run the following commands to verify the installation

node -v
npm -v

For backend, make sure that you have Python 3.6+ and pip installed.

Install Frontend and Backend

The frontend can be installed with the help of NPM:

git clone -b master --single-branch --depth=1 https://github.com/datamllab/rlcard-showdown.git
cd rlcard-showdown
npm install

The backend of leaderboard can be installed with

pip3 install -r requirements.txt
cd server
python3 manage.py migrate
cd ..

Run RLCard-Showdown

  1. Launch the backend of leaderboard with
cd server
python3 manage.py runserver
  1. Download the pre-trained models in Google Drive or 百度网盘 提取码: qh6s. Extract it in pve_server/pretrained.

In a new terminal, start the PvE server (i.e., human vs AI) of DouZero with

cd pve_server
python3 run_douzero.py

Alternatively, you can start the PvE server interfaced with RLCard:

cd pve_server
python3 run_dmc.py

They are conceptually the same with minor differences in state representation and training time of the pre-trained models (DouZero is fully trained with more than a month, while DMC in RLCard is only trained for hours).

  1. Run the following command in another new terminal under the project folder to start frontend:
npm start

You can view leaderboard at http://127.0.0.1:3000/ and PvE demo of Dou Dizhu at http://127.0.0.1:3000/pve/doudizhu-demo. The backend of leaderboard will run in http://127.0.0.1:8000/. The PvE backend will run in http://127.0.0.1:5000/.

Demos

leaderboards upload doudizhu-replay leduc-replay

Contact Us

If you have any questions or feedback, feel free to drop an email to Songyi Huang for the frontend or Daochen Zha for backend.

Acknowledgements

We would like to thank JJ World Network Technology Co., LTD for the generous support, Chieh-An Tsai for user interface design, and Lei Pan for the help in visualizations.

Owner
Data Analytics Lab at Texas A&M University
We develop automated and interpretable machine learning algorithms/systems with understanding of their theoretical properties.
Data Analytics Lab at Texas A&M University
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022