This repository contains the code for "Generating Datasets with Pretrained Language Models".

Related tags

Text Data & NLPdino
Overview

Datasets from Instructions (DINO 🦕 )

This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces a method called Datasets from Instructions (DINO 🦕 ) that enables pretrained language models to generate entire datasets from scratch.

🔧 Setup

All requirements for DINO can be found in requirements.txt. You can install all required packages in a new environment with pip install -r requirements.txt.

💬 CLI Usage

Single Texts

To generate datasets for (single) text classification, you can use DINO as follows:

python3 dino.py \
 --output_dir <OUTPUT_DIR> \
 --task_file <TASK_FILE> \
 --num_entries_per_label <N>

where <OUTPUT_DIR> is a directory to which the generated dataset is written, <TASK_FILE> is a JSON file containing a task specification (see Task Specs), and <N> is the number of examples to generate per label. To get an overview of additional parameters, run python3 dino.py --help.

Text Pairs

To generate datasets for text pair classification, you first need a dataset of raw input texts (which you can also generate using DINO). You can then run

python3 dino.py \
 --output_dir <OUTPUT_DIR> \
 --task_file <TASK_FILE> \
 --input_file <INPUT_FILE> \
 --input_file_type <INPUT_FILE_TYPE> \
 --num_entries_per_input_and_label <N>

with <OUTPUT_DIR> and <TASK_FILE> as before. <INPUT_FILE> refers to the file containing raw input texts, <INPUT_FILE_TYPE> specifies its type, which should be one of

  • plain: for a plain text file with one input text per line
  • jsonl: for a dataset file generated by DINO in a previous step

and <N> is the number of examples to generate per label and input text.

📋 Task Specs

🚨 Before you write custom task specifications, please note that this is still a very early release and we have not tested DINO on other tasks than semantic textual similarity yet. Please let us know if you see something strange. 🚨

To generate a dataset for a task, you need to provide a file containing a task specification, containing (among other things) the instructions given to the pretrained language model. A task specification is a single JSON object that looks like this:

{
  "task_name": "<TASK_NAME>",
  "labels": {
    "<LABEL_1>": {
      "instruction": "<INSTRUCTION_1>",
      "counter_labels": [<COUNTER_LABELS_1>]
    },

    ...,

    "<LABEL_n>": {
      "instruction": "<INSTRUCTION_n>",
      "counter_labels": [<COUNTER_LABELS_n>]
    }
  }
}

Here, <TASK_NAME> is the name for the task and <LABEL_1>, ..., <LABEL_n> are the task's labels. For each label <LABEL_i>, <INSTRUCTION_i> is the instruction provided to the language model for generating examples with label <LABEL_i> (see Writing Instructions). You can additionally specify a list of counter labels <COUNTER_LABELS_n> for each label. This tells the model to generate outputs that are not only likely given the current label, but also unlikely given all counter labels (see the paper for details).

Examples

You can find two examples of task specifications in /task_specs:

  • sts.json is a task specification for generating a semantic textual similarity dataset if a set of raw input texts is already given.
  • sts-x1.json is a task specification for generating a set of raw input texts. This set can then be used in a subsequent step to generate a full STS dataset using sts.json.

Writing Instructions

When writing instructions for a new task, you should consider the following things:

  • Always end your instructions with an (opening) quotation mark ("). This is required because it allows us to interpret the next quotation mark generated by the language model as a signal that it is done generating an example.
  • For good results, keep the instructions as short and simple as possible as this makes it easier for a pretrained language model to understand them.
  • If you are writing instructions for a text pair classification task, make sure that each instruction contains the placeholder <X1> exactly once. At this position, the provided raw input sentences are inserted during generation.

An example for an instruction that prompts the model to generate a positive review for a restaurant would be:

Task: Write a review for a really great restaurant.
Review: "

An example for an instruction that prompts the model to generate a sentence that has the same meaning as another given sentence would be:

Task: Write two sentences that mean the same thing.
Sentence 1: "<X1>"
Sentence 2: "

🦕 Generated DINOs

In this section, we will soon make publicly available a list of datasets that we have generated using DINO.

📕 Citation

If you make use of the code in this repository or of any DINO-based dataset, please cite the following paper:

@article{schick2020generating,
  title={Generating Datasets with Pretrained Language Models},
  author={Timo Schick and Hinrich Schütze},
  journal={Computing Research Repository},
  volume={arXiv:2104.07540},
  url={https://arxiv.org/abs/2104.07540},
  year={2021}
}
Owner
Timo Schick
NLP Researcher @ SulzerGmbH , PhD Student @ CIS, LMU Munich
Timo Schick
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021