This is a Python binding to the tokenizer Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is regular-expression based, extensible, and advanced tokeniser written in C++ (http://ilk.uvt.nl/ucto).

Overview
http://applejack.science.ru.nl/lamabadge.php/python-ucto Project Status: Active – The project has reached a stable, usable state and is being actively developed.

Ucto for Python

This is a Python binding to the tokeniser Ucto. Tokenisation is one of the first step in almost any Natural Language Processing task, yet it is not always as trivial a task as it appears to be. This binding makes the power of the ucto tokeniser available to Python. Ucto itself is a regular-expression based, extensible, and advanced tokeniser written in C++ (https://languagemachines.github.io/ucto).

Installation

Easy

Manual (Advanced)

  • Make sure to first install ucto itself (https://languagemachines.github.io/ucto) and all its dependencies.
  • Install Cython if not yet available on your system: $ sudo apt-get cython cython3 (Debian/Ubuntu, may differ for others)
  • Clone this repository and run: $ sudo python setup.py install (Make sure to use the desired version of python)

Advanced note: If the ucto libraries and includes are installed in a non-standard location, you can set environment variables INCLUDE_DIRS and LIBRARY_DIRS to point to them prior to invocation of setup.py install.

Usage

Import and instantiate the Tokenizer class with a configuration file.

import ucto
configurationfile = "tokconfig-eng"
tokenizer = ucto.Tokenizer(configurationfile)

The configuration files supplied with ucto are named tokconfig-xxx where xxx corresponds to a three letter iso-639-3 language code. There is also a tokconfig-generic one that has no language-specific rules. Alternatively, you can make and supply your own configuration file. Note that for older versions of ucto you may need to provide the absolute path, but the latest versions will find the configurations supplied with ucto automatically. See here for a list of available configuration in the latest version.

The constructor for the Tokenizer class takes the following keyword arguments:

  • lowercase (defaults to False) -- Lowercase all text
  • uppercase (defaults to False) -- Uppercase all text
  • sentenceperlineinput (defaults to False) -- Set this to True if each sentence in your input is on one line already and you do not require further sentence boundary detection from ucto.
  • sentenceperlineoutput (defaults to False) -- Set this if you want each sentence to be outputted on one line. Has not much effect within the context of Python.
  • paragraphdetection (defaults to True) -- Do paragraph detection. Paragraphs are simply delimited by an empty line.
  • quotedetection (defaults to False) -- Set this if you want to enable the experimental quote detection, to detect quoted text (enclosed within some sort of single/double quote)
  • debug (defaults to False) -- Enable verbose debug output

Text is passed to the tokeniser using the process() method, this method returns the number of tokens rather than the tokens itself. It may be called multiple times in sequence. The tokens themselves will be buffered in the Tokenizer instance and can be obtained by iterating over it, after which the buffer will be cleared:

#pass the text (a str) (may be called multiple times),
tokenizer.process(text)

#read the tokenised data
for token in tokenizer:
    #token is an instance of ucto.Token, serialise to string using str()
    print(str(token))

    #tokens remember whether they are followed by a space
    if token.isendofsentence():
        print()
    elif not token.nospace():
        print(" ",end="")

The process() method takes a single string (str), as parameter. The string may contain newlines, and newlines are not necessary sentence bounds unless you instantiated the tokenizer with sentenceperlineinput=True.

Each token is an instance of ucto.Token. It can be serialised to string using str() as shown in the example above.

The following methods are available on ucto.Token instances: * isendofsentence() -- Returns a boolean indicating whether this is the last token of a sentence. * nospace() -- Returns a boolean, if True there is no space following this token in the original input text. * isnewparagraph() -- Returns True if this token is the start of a new paragraph. * isbeginofquote() * isendofquote() * tokentype -- This is an attribute, not a method. It contains the type or class of the token (e.g. a string like WORD, ABBREVIATION, PUNCTUATION, URL, EMAIL, SMILEY, etc..)

In addition to the low-level process() method, the tokenizer can also read an input file and produce an output file, in the same fashion as ucto itself does when invoked from the command line. This is achieved using the tokenize(inputfilename, outputfilename) method:

tokenizer.tokenize("input.txt","output.txt")

Input and output files may be either plain text, or in the FoLiA XML format. Upon instantiation of the Tokenizer class, there are two keyword arguments to indicate this:

  • xmlinput or foliainput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False.
  • xmloutput or foliaoutput -- A boolean that indicates whether the input is FoLiA XML (True) or plain text (False). Defaults to False. If this option is enabled, you can set an additional keyword parameter docid (string) to set the document ID.

An example for plain text input and FoLiA output:

tokenizer = ucto.Tokenizer(configurationfile, foliaoutput=True)
tokenizer.tokenize("input.txt", "ucto_output.folia.xml")

FoLiA documents retain all the information ucto can output, unlike the plain text representation. These documents can be read and manipulated from Python using the FoLiaPy library. FoLiA is especially recommended if you intend to further enrich the document with linguistic annotation. A small example of reading ucto's FoLiA output using this library follows, but consult the documentation for more:

import folia.main as folia
doc = folia.Document(file="ucto_output.folia.xml")
for paragraph in doc.paragraphs():
    for sentence in paragraph.sentence():
        for word in sentence.words()
            print(word.text(), end="")
            if word.space:
                print(" ", end="")
        print()
    print()

Test and Example

Run and inspect example.py.

Comments
  • undefined symbol: ...

    undefined symbol: ...

    Hi there,

    I have a clean ucto installation from sudo apt install ucto. When I compile the python extension, however, I can't import it since it fails with:

    ImportError: /home/manjavacas/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/ucto.cpython-36m-x86_64-linux-gnu.so: undefined symbol: _ZN9Tokenizer14TokenizerClass4initERKSs
    

    Not sure what might be going bad, since ucto works perfectly fine and the extension manages to compile without errors.

    Any ideas?

    question 
    opened by emanjavacas 8
  • Compilation fails after latest ucto release

    Compilation fails after latest ucto release

        gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -march=x86-64 -mtune=generic -O3 -pipe -fno-plt -fPIC -I/home/proycon/envs/dev
    /include -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/home/proycon/envs/dev/include -I/usr/include/python3.10 -c ucto_wrapper.cpp -o build/temp.linux-x86_64-3.10/ucto_wrapper.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
        ucto_wrapper.cpp: In function ‘PyObject* __pyx_gb_4ucto_9Tokenizer_8generator(__pyx_CoroutineObject*, PyThreadState*, PyObject*)’:
        ucto_wrapper.cpp:3750:86: error: no match for ‘operator=’ (operand types are ‘std::vector<std::__cxx11::basic_string<char> >’ and ‘std::vector<icu_70::UnicodeString>’)
         3750 |   __pyx_cur_scope->__pyx_v_results = __pyx_cur_scope->__pyx_v_self->tok.getSentences();
    
    bug 
    opened by proycon 3
  • Tokenizer does not return lowercase tokens when lowercase = True

    Tokenizer does not return lowercase tokens when lowercase = True

    When I call tokenizer with lowercase True, the output contains tokens with uppercase.

    t = ucto.Tokenizer("tokconfig-nld",lowercase = True,sentencedetection=False,paragraphdetection=False)
    ucto: textcat configured from: /vol/customopt/lamachine.stable/share/ucto/textcat.cfg

    z = x.article_set.all()[0]

    t.process(z.text)

    [str(token) for token in t]

    ["'", 'oor', 'onze', 'redacteur', 'mr.', 'F.', 'KUITENBROUWER', 'AMSTERDAM',

    bug 
    opened by martijnbentum 3
  • Manual installation fails: config.h: no such file or directory

    Manual installation fails: config.h: no such file or directory

    I’ve tried to follow the manual installation instructions on Ubuntu 16.04, but it seems to be missing a file:

    [email protected]:~/git/python-ucto$ git status
    On branch master
    Your branch is up-to-date with 'origin/master'.
    nothing to commit, working directory clean
    [email protected]:~/git/python-ucto$ uname -a
    Linux unut 4.4.0-124-generic #148-Ubuntu SMP Wed May 2 13:00:18 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
    [email protected]:~/git/python-ucto$ sudo python setup.py install 
    /usr/lib/python2.7/distutils/dist.py:267: UserWarning: Unknown distribution option: 'install_requires'
      warnings.warn(msg)
    running install
    running build
    running build_ext
    cythoning ucto_wrapper2.pyx to ucto_wrapper2.cpp
    building 'ucto' extension
    x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -Wdate-time -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -I/usr/include/ -I/usr/include/libxml2 -I/usr/local/include/ -I/usr/include/python2.7 -c ucto_wrapper2.cpp -o build/temp.linux-x86_64-2.7/ucto_wrapper2.o --std=c++0x -D U_USING_ICU_NAMESPACE=1
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
    In file included from ucto_wrapper2.cpp:457:0:
    /usr/include/ucto/tokenize.h:33:20: fatal error: config.h: No such file or directory
    compilation terminated.
    error: command 'x86_64-linux-gnu-gcc' failed with exit status 1
    
    opened by texttheater 3
  • TokenRole has no attribute ENDOFQUOTE

    TokenRole has no attribute ENDOFQUOTE

    Hi there, I noticed that isendofquote seems to be broken.

    Seems like a typo on this line:

    https://github.com/proycon/python-ucto/blob/65a7f03a92f60fa28e330a5fb735d75230cdbec4/ucto_wrapper.pyx#L29

    which should be rather ENDOFQUOTE.

    bug 
    opened by emanjavacas 1
  • Question: possible to retrieve untokenized sentences?

    Question: possible to retrieve untokenized sentences?

    May sound silly, but would it be possible to create a method that would allow retrieving sentences from the tokenizer without whitespace between punctuation marks (e.g. untokenized)? E.g. maybe providing a tuple that would hold two versions of a sentence, both the tokenized, as well as the original?

    It is practical to keep the untokenized sentence in some scenarios (e.g. showing them to end users), and reconstructing it by script would be rather hacky and imprecise I guess.

    enhancement 
    opened by pirolen 1
Releases(v0.6.1)
Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
2021搜狐校园文本匹配算法大赛baseline

sohu2021-baseline 2021搜狐校园文本匹配算法大赛baseline 简介 分享了一个搜狐文本匹配的baseline,主要是通过条件LayerNorm来增加模型的多样性,以实现同一模型处理不同类型的数据、形成不同输出的目的。 线下验证集F1约0.74,线上测试集F1约0.73。

苏剑林(Jianlin Su) 45 Sep 06, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022