This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

Overview

About spellchecker.py

Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levenshtein string metric for measuring edit distance between two sequences of characters.

How to Write Your Own Test Cases

In the lib folder, you will see two different text files called 'candidate_words.txt' and 'incorrect_words.txt':

  • The candidate_words.txt text file can contain an unlimited amount of CORRECTLY spelled words, with each word written on a new line.
  • The incorrect_words.txt text file can contain an unlimited amount of INCORRECTLY spelled words, with each word written on a new line. However, each incorrectly spelled word in this list MUST have its correctly spelled counterpart contained somewhere in the 'candidate_words.txt' text file. It doesn't matter where, since the 'candidate_words.txt' file will be randomly shuffled anyway.

In the test folder, you will see a text file called target_words.txt:

  • The 'target_words.txt' file will contain the CORRECT spelling of each word contained in the 'incorrect_words.txt' text file, with each being on a new line in the same exact order that you inserted their incorrectly spelled counterparts in the 'incorrect_words.txt' text file. It is important that both the incorrectly and correctly spelled words are in the same order to be able to calculate the accuracy of the spell checker.

To view an example on how to create your own test cases, take a look at the files provided in either folder.

How to Run the Program

Enter the folder's directory using your terminal. Then, simply run python3 spellchecker.py

  • The only thing you will need to modify are the files in the lib and test folders if you want to try the program with your own test cases. The program does not need to be touched, unless you'd like to modify the global variable 'THRESHOLD', which is used as the threshold to find an incorrectly spelled word's closest approximation.
  • The incorrectly spelled words in 'incorrect_words.txt' will be run through the program to find its closest lexical match from the candidate_words.txt text file using the Damerau-Levenshtein algorithm.
  • The spellchecked words will then be, in order, cross checked against its intended counterparts in target_words.txt to calculate the overall accuracy of the spellchecking algorithm.

The results of the program will then be printed to your terminal.

Dependencies

Ensure that you have difflib installed for python3.

Final Words

Feel free to use or modify this program for your intended purposes!

Owner
Raihan Ahmed
Pursuing a degree in CS with concentrations in Computer Science, Computer Networks and Security, and Information Technology. Minoring in Linguistics.
Raihan Ahmed
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Yuqing Xie 2 Feb 17, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022