Curso práctico: NLP de cero a cien 🤗

Overview

Curso Práctico: NLP de cero a cien

Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utilizando una de las bibliotecas más populares en este campo: Hugging Face. Independientemente de tus conocimientos actuales, terminarás el curso hablando tranquilamente de Transformers, Word Embeddings, modelos secuenciales, mecanismos de atención y modelado del lenguaje.

➡️ Versión web: https://somosnlp.org/nlp-de-cero-a-cien

Calendario

El curso está dividido en 7 sesiones que se impartirán cada dos martes a las 18h CET a partir del 13 de Julio. Dependiendo de tu nivel actual puedes unirte al curso en la sesión que quieras.

  • 13 Jul: Introducción al NLP y Word Embeddings
  • 27 Jul: Modelos secuenciales (RNNs, LSTMs)
  • 10 Ag: Transformers I. Arquitectura Transformer y mecanismo de atención
  • 24 Ag: Transformers II. Aprendizaje por transferencia
  • 7 Sep: Transformers III. Generación de texto
  • 21 Sep: Transformers IV. Modelado del lenguaje
  • 5 Oct: Demos de NLP con 🤗 Spaces

Cada sesión durará 30 minutos y habrá 10 minutos extra dedicados a resolver dudas de los asistentes.

¿Te has perdido una sesión? ¡No pasa nada!

  • Subimos las grabaciones a esta playlist de YouTube.
  • En este repositorio puedes consultar todo el material del curso y recursos extra.
  • Puedes preguntar tus dudas en el canal #nlp-de-cero-a-cien de nuesta comunidad de Discord.

Formadores

Por orden alfabético:

María Grandury: María es una Ingeniera e Investigadora de Machine Learning enfocada en NLP y en la fiabilidad de la IA (i.e. XAI, ataques adversarios). Estudió el doble grado de Matemáticas y Física y actualmente trabaja en neurocat, donde desarrolla una herramienta para explicar y evaluar la estabilidad de cualquier modelo de ML. María forma parte de Women in AI & Robotics cuya misión es promover una IA inclusiva y responsable. También fundó la comunidad Somos NLP con el objetivo de acelerar el avance del NLP en español.

Manuel Romero: Manuel tiene una "mente inquieta y un alma emprendedora". Estudió ingeniería informática y cuenta con casi 10 años de experiencia como desarrollador back-end y arquitecto de software. Además, es un SCRUM Master y Product Owner certificado. Actualmente trabaja en Narrativa como Ingeniero Senior de Inteligencia Artificial especializado en NLP/NLG y es el mayor contribuidor del Model Hub de Hugging Face con más de 200 modelos.

Omar Sanseviero: Omar es un Ingeniero de Machine Learning con 7 años de experiencia en la industria de la tecnología. Actualmente trabaja en Hugging Face en el equipo de open-source democratizando el uso de Machine Learning. Previamente, Omar trabajó como Ingeniero de Software en Google en Suiza en el equipo de Assistant. Omar es un apasionado de la educación y co-fundó AI Learners, una comunidad de personas que buscan aprender y discutir temas sobre Inteligencia Artificial y sus diferentes aplicaciones.

Lewis Tunstall: Lewis es Ingeniero de Machine Learning en el equipo de open-source de Hugging Face. Tiene varios años de experiencia construyendo aplicaciones de Machine Learning para startups y empresas en los dominios de NLP, análisis de datos topológicos y series temporales. Tiene un doctorado en física teórica y ha ocupado puestos de investigación en Australia, Estados Unidos y Suiza. Su trabajo actual se centra en el desarrollo de herramientas para la comunidad de NLP y en la formación de las personas para que las utilicen de forma eficaz.

Inscripción

El curso es gratuito y via online. Al registrarte en Eventbrite recibirás un email de confirmación y otro el día de cada sesión para poder entrar en el workshop.

Organizan Somos NLP 🤗 y Spain AI

Somos NLP 🤗

Somos NLP es la red internacional de profesionales, investigadores y estudiantes acelerando el avance del NLP en español. Nació como la comunidad de hispanohablantes de la iniciativa "Languages at Hugging Face" con el objetivo de democratizar el NLP en español:

  • ¿Cómo? Creando y compartiendo recursos que posibiliten y aceleren el desarrollo del NLP en Español.
  • ¿Por qué? La investigación en NLP está centrada en el inglés y descuida las dificultades particulares del NLP en español. Creemos que un idioma tan extendido como el español debería tener una representación acorde en el ámbito del NLP y vamos a hacer esto realidad.

¡Únete a la comunidad en Discord y síguenos en YouTube, Twitter y LinkedIn!

Spain AI

Spain AI es una red nacional y asociación sin ánimo de lucro, con la finalidad de crear una comunidad colaborativa dentro del ámbito de la Inteligencia Artificial en España.

26 ciudades ya y creciendo. Únete a nosotros o crea tu propia comunidad en spain-ai.com y @Spain_AI. ¡Síguenos!

Owner
Somos NLP
Comunidad de profesionales, investigadores y estudiantes acelerando el avance del NLP en Español.
Somos NLP
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022