A music comments dataset, containing 39,051 comments for 27,384 songs.

Overview

Music Comments Dataset

License: AGPL v3

A music comments dataset, containing 39,051 comments for 27,384 songs.

For academic research use only.

Introduction

This dataset is part of a recent multimodal deep learning project on music and natural language that I have been working on. The complete dataset contains 30s of audio, metadata, lyrics, and comments for each piece of data. This dataset contains only the lyrics and comments sections.

In the current stage, it only contains 39,051 comments for 27,384 songs (for dataset_summarization_positive.pkl) and can be larger if necessary (for other files).

Because the audio data is much less than the review data, I kept only this part as the dataset in order to ensure that music and reviews appear in pairs.

Here is a data sample:

Lyrics: Come up to meet you, tell you I'm sorry; You don't know how lovely you are; I had to find you, tell you I need you; ; Tell you I set you apart; Tell me your secrets and ask me your questions; Oh, let's go back to the start; ; Running in circles, coming up tails; Heads on a science apart; Nobody said it was easy; ; It's such a shame for us to part; Nobody said it was easy; No one ever said it would be this hard; ; Oh, take me back to the start; I was just guessing at numbers and figures; Pulling the puzzles apart; Questions of science, science and progress; ; Do not speak as loud as my heart; ; But tell me you love me, come back and haunt me; Oh and I rush to the start; Running in circles, chasing our tails; ; Coming back as we are; Nobody said it was easy; Oh, it's such a shame for us to part; Nobody said it was easy; No one ever said it would be so hard; I'm going back to the start; Oh ooh, ooh ooh ooh ooh; Ah ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh; Oh ooh, ooh ooh ooh ooh

Ground Truth: The song is like poetry with many meanings to be sifted out applicable to many people in many different relationship situations. I find the lyrics touch me as if specifically written regarding my own situations at times. The following meaning I describe in no way reflects any situation I have ever had to face.

Data Source and Data Preprocessing

The audio and metadata files are from the Music4All Dataset, which I cannot make available directly due to agreeement restrictions, so anyone who would like to request that dataset can contact the authors directly.

The review data is mainly from songmeanings.com. I have done some data pre-processing to make the comment data more concise.

The first is the summarization method. I use the generative summarisation method to remove useless information from the comments (See Figure 1).

The second is the positive method. Each original comment carries a rating, which relates to the degree to which the comment itself is agreed by the community. The summarization token means that I only pick comments which have ratings > 0. The not_negative tokens means that the comments have ratings >= 0.

Folder Structure

.
├── README.md
├── codes
│   └── data.py
└── dataset
    ├── dataset_summarization_positive.pkl
    ├── dataset_summarization_not_negative.pkl
    ├── dataset_summarization.pkl
    ├── dataset_positive.pkl
    ├── dataset_not_negative.pkl
    └── dataset.pkl

In the data.py file, I have provided a PyTorch Dataset class to use.

Data Format

the .pkl file is an object List. It can be loaded and read using LyricsCommentsDatasetPsuedo class in data.py.

Each data contains two attributes: lyrics and comment. A lyric may correspond to more than one comment, so I broadcast the lyrics to ensure that each comment has a corresponding lyric.

Citation

@article{zhanggenerating,
  title={Generating Comments from Music and Lyrics},
  author={Zhang, Yixiao and Dixon, Simon},
  year={2021}
}
Owner
Zhang Yixiao
AI and Music PhD Student @c4dm
Zhang Yixiao
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022