Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

Related tags

Deep LearningProMo
Overview

ProMo (Prosody Morph)

https://travis-ci.org/timmahrt/ProMo.svg?branch=master https://coveralls.io/repos/github/timmahrt/ProMo/badge.svg?branch=master https://img.shields.io/badge/license-MIT-blue.svg?

Questions? Comments? Feedback? Chat with us on gitter!

Join the chat at https://gitter.im/pythonProMo/Lobby

A library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

This library can be used to resynthesize pitch in natural speech using pitch contours taken from other speech samples, generated pitch contours, or through algorithmic manipulations of the source pitch contour.

1   Common Use Cases

What can you do with this library?

Apply the pitch or duration from one speech sample to another.

  • alignment happens both in time and in hertz

    • after the morph process, the source pitch points will be at the same absolute pitch and relative time as they are in the target file
    • time is relative to the start and stop time of the interval being considered (e.g. the pitch value at 80% of the duration of the interval). Relative time is used so that the source and target files don't have to be the same length.
    • temporal morphing is a minor effect if the sampling frequency is high but it can be significant when, for example, using a stylized pitch contour with few pitch samples.
  • modifications can be done between entire wav files or between corresponding intervals as specified in a textgrid or other annotation (indicating the boundaries of words, stressed vowels, etc.)

    • the larger the file, the less useful the results are likely to be without using a transcript of some sort
    • the transcripts do not have to match in lexical content, only in the number of intervals (same number of words or phones, etc.)
  • modifications can be scaled (it is possible to generate a wav file with a pitch contour that is 30% or 60% between the source and target contours).

  • can also morph the pitch range and average pitch independently.

  • resynthesis is performed by Praat.

  • pitch can be obtained from praat (such as by using praatio) or from other sources (e.g. ESPS getF0)

  • plots of the resynthesis (such as the ones below) can be generated

2   Illustrative example

Consider the phrase "Mary rolled the barrel". In the first recording (examples/mary1.wav), "Mary rolled the barrel" was said in response to a question such as "Did John roll the barrel?". On the other hand, in the second recording (examples/mary2.wav) the utterance was said in response to a question such as "What happened yesterday".

"Mary" in "mary1.wav" is produced with more emphasis than in "mary2.wav". It is longer and carries a more drammatic pitch excursion. Using ProMo, we can make mary1.wav spoken similar to mary2.wav, even though they were spoken in a different way and by different speakers.

Duration and pitch carry meaning. Change these, and you can change the meaning being conveyed.

Note that modifying pitch and duration too much can introduce artifacts. Such artifacts can be heard even in pitch morphing mary1.wav to mary2.wav.

Pitch morphing (examples/pitch_morph_example.py):

The following image shows morphing of pitch from mary1.wav to mary2.wav on a word-by-word level in increments of 33% (33%, 66%, 100%). Note that the morph adjusts the temporal dimension of the target signal to fit the duration of the source signal (the source and generated contours are equally shorter than the target contour). This occurs at the level of the file unless the user specifies an equal number of segments to align in time (e.g. using word-level transcriptions, as done here, or phone-level transcriptions, etc.)

examples/files/mary1_mary2_f0_morph.png

With the ability to morph pitch range and average pitch, it becomes easier to morph contours produced by different speakers:

The following image shows four different pitch manipulations. On the upper left is the raw morph. Notice that final output (black line) is very close to the target. Differences stem from duration differences.

However, the average pitch and pitch range are qualities of speech that can signify differences in gender in addition to other aspects of speaker identity. By resetting the average pitch and pitch range to that of the source, it is possible to morph the contour while maintaining aspects of the source speaker's identity.

The image in the upper right contains a morph followed by a reset of the average pitch to the source speaker's average pitch. In the bottom right a morph followed by a reset of the speaker's pitch range. In the bottom right pitch range was reset and then the speaker's average pitch was reset.

The longer the speech sample, the more representative the pitch range and mean pitch will be of the speaker. In this example both are skewed higher by the pitch accent on the first word.

Here the average pitch of the source (a female speaker) is much higher than the target (a male speaker) and the resulting morph sounds like it comes from a different speaker than the source or target speakers. The three recordings that involve resetting pitch range and/or average pitch sound much more natural.

examples/files/mary1_mary2_f0_morph_compare.png

Duration morphing (examples/duration_manipulation_example.py):

The following image shows morphing of duration from mary1.wav to mary2.wav on a word-by-word basis in increments of 33% (33%, 66%, 100%). This process can operate over an entire file or, similar to pitch morphing, with annotated segments, as done in this example.

examples/files/mary1_mary2_dur_morph.png

3   Tutorials

Tutorials for learning about prosody manipulation and how to use ProMo are available.

Tutorial 1.1: Intro to ProMo

Tutorial 1.2: Pitch manipulation tutorial

4   Major revisions

Ver 1.3 (May 29, 2017)

  • added tutorials
  • f0Morph() can now exclude certain regions from the morph process if desired

Ver 1.2 (January 27, 2017)

  • added code for reshaping pitch accents (shift alignment, add plateau, or change height)

Ver 1.1 (February 22, 2016)

  • f0 morph code for modifying speaker pitch range and average pitch
  • (October 20, 2016) Added integration tests with travis CI and coveralls support.

Ver 1.0 (January 19, 2016)

  • first public release.

Beta (July 1, 2013)

  • first version which was utilized in my dissertation work

5   Requirements

Python 2.7.* or above

Python 3.3.* or above (or below, probably)

My praatIO library is used extensively and can be downloaded here

Matplotlib is needed if you want to plot graphs. Matplotlib website

Scipy is needed if you want to use interpolation--typically if you have stylized pitch contours (in praat PitchTier format, for example) that you want to use in your morphing). Scipy website

Matplotlib and SciPy are non-trivial to install, as they depends on several large packages. You can visit their websites for more information. I recommend the following instructions to install matplotlib which uses python wheels. These will install all required libraries in one fell swoop.

On Mac, open a terminal and type:

python -m pip install matplotlib

python -m pip install scipy

On Windows, open a cmd or powershell window and type:

<<path to python>> -m pip install matplotlib

<<path to python>> -m pip install scipy

e.g. C:\python27\python.exe -m install matplotlib

Otherwise, to manually install, after downloading the source from github, from a command-line shell, navigate to the directory containing setup.py and type:

python setup.py install

If python is not in your path, you'll need to enter the full path e.g.:

C:\Python27\python.exe setup.py install

6   Usage

See /examples for example usages

7   Installation

If you on Windows, you can use the installer found here (check that it is up to date though) Windows installer

Promo is on pypi and can be installed or upgraded from the command-line shell with pip like so:

python -m pip install promo --upgrade

Otherwise, to manually install, after downloading the source from github, from a command-line shell, navigate to the directory containing setup.py and type:

python setup.py install

If python is not in your path, you'll need to enter the full path e.g.:

C:\Python36\python.exe setup.py install

8   Citing ProMo

If you use ProMo in your research, please cite it like so:

Tim Mahrt. ProMo: The Prosody-Morphing Library. https://github.com/timmahrt/ProMo, 2016.

9   Acknowledgements

Development of ProMo was possible thanks to NSF grant BCS 12-51343 to Jennifer Cole, José I. Hualde, and Caroline Smith and to the A*MIDEX project (n° ANR-11-IDEX-0001-02) to James Sneed German funded by the Investissements d'Avenir French Government program, managed by the French National Research Agency (ANR).

Owner
Tim
I write tools for working with speech data.
Tim
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023