Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Overview

Logo

Türkiye Mobese Görüntü Takip

Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi

Multiple Object Tracking System in Turkish Mobese with OPENCV and Yolo
Explore the docs » Projeyi keşfet

Table of Contents / İçerik Bölümü
  1. About the Project / Proje Hakkında
  2. Getting Started / Başlangıç
  3. Usage / Kullanım
  4. Roadmap / Yol Haritası
  5. Contributing / Katkı
  6. License / Lisans

If you are having any os compatiblity issue, let me know. I will try to fix as soon as possible so let's explore the docs.

Herhangi bir işletim sistemi uyumsuzluğu varsa, bana bildirin. En kısa sürede düzeltmeye çalışacağım, hadi dökümanı inceleyelim.

About the Project / Proje Hakkında

Currently this project have 171 cameras. | Projeye yüklü 171 canlı mobese görüntüsü vardır.

İstanbul > 44 Canlı Yayın          |   İstanbul > 44 Live CCTV Footage
İzmir > 76 Canlı Yayın             |   İzmir > 76 Live CCTV Footage
Tekirdag > 1 Canlı Yayın           |   Tekirdag > 1 Live CCTV Footage
Konya > 32 Canlı Yayın             |   Konya > 32 Live CCTV Footage
Ordu > 21 Canlı Yayın              |   Ordu > 21 Live CCTV Footage

This project implements Turkish Mobese CCTV footages detection classifier using pretrained yolov4-tiny models. If you trust your computer performance you can download yolov4 models too. The yolov4 models are taken from the official yolov4 paper which was released in April 2020 and the yolov4 implementation is from darknet.

Bu proje, önceden eğitilmiş yolov4-tiny modellerini kullanarak Türk Mobese Canlı CCTV görüntülerine algılama sınıflandırıcısını uygular. Bilgisayarınızın performansına güveniyorsanız yolov4 modellerinide indirebilirsiniz. Yolov4 modelleri, Nisan 2020'de yayınlanan resmi yolov4 belgesinden alınmıştır ve Yolov4 uygulaması darknet'tendir.

Built With / Kullanılanlar

Getting Started / Başlangıç

To get a local copy up and running follow these simple steps.

Kendi bilgisayarınızda çalıştırmak için bu basit adımları izleyin.

Installation / Kurulum

  1. Clone the repo | Projeyi indir.
    git clone https://github.com/samet-g/mobese.git
  2. Install Python packages | Gerekli Python paketlerini yükle.
    pip3 install -r requirements.txt

Usage / Kullanım

  • Run with Python or Download the .exe file.
  • Python kullanarak çalıştır veya .exe dosyasını indir
python3 main.py | just run .exe file

Roadmap / Yol Haritası

See the open issues for a list of proposed features
It should be good use cctv cameras in city with Shodan API or make GUI.

Sorunlar için açık sorunları kontrol edin.
Shodan API ile esnaf güvenlik kamerası kullanmak veya GUI yapmak iyi olur.

Contributing / Katkı

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated especially Roadmap / Yol Haritası check this to-do list.

Katkılar, açık kaynak topluluğu için büyük nimettir özellikle Roadmap / Yol Haritası kısmındaki yapılacak-listesini kontrol edin.

  1. Fork the Project | Projeyi forkla.
  2. Create your Feature Branch | Katkıda Bulun
    git checkout -b feature/YeniOzellik
  3. Commit your Changes | Değişiklikleri Commitle
    git commit -m 'Add some YeniOzellik'
  4. Push to the Branch | Değişikliğini Yolla
    git push origin feature/YeniOzellik
  5. Open a Pull Request | Pull Request Aç

License / Lisans

Distributed under the GNU License.
See LICENSE for more information.

GNU Lisansı altında dağıtılmaktadır.
Daha fazla bilgi için LICENSE bölümüne bakın.

Comments
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Denial of Service (DoS)

    opened by samet-g 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept low severity | 399/1000
    Why? Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.21.2 -> 1.22.2
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    [Snyk] Security upgrade numpy from 1.21.2 to 1.22.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | NULL Pointer Dereference
    SNYK-PYTHON-NUMPY-2321964 | numpy:
    1.21.2 -> 1.22.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.0.0)
Owner
cybersec researcher and python dev.
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022