Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Overview

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval

This repo provides personal implementation of paper Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval in a simplified way. The code is refered to official version of ANCE.

Environment

'transformers==2.3.0' 
'pytrec-eval'
'faiss-cpu'
'wget'
'python==3.6.*'

Data Download & Preprocessing

To download all the needed data, run:

bash commands/data_download.sh 

Data Preprocessing

The command to preprocess passage and document data is listed below:

python data/msmarco_data.py 
--data_dir $raw_data_dir \
--out_data_dir $preprocessed_data_dir \ 
--model_type {use rdot_nll for ANCE FirstP, rdot_nll_multi_chunk for ANCE MaxP} \ 
--model_name_or_path roberta-base \ 
--max_seq_length {use 512 for ANCE FirstP, 2048 for ANCE MaxP} \ 
--data_type {use 1 for passage, 0 for document}

The data preprocessing command is included as the first step in the training command file commands/run_train.sh

Warmup for Training

ANCE training starts from a pretrained BM25 warmup checkpoint. The command with our used parameters to train this warmup checkpoint is in commands/run_train_warmup.py and is shown below:

    python3 -m torch.distributed.launch --nproc_per_node=1 ../drivers/run_warmup.py \
    --train_model_type rdot_nll \
    --model_name_or_path roberta-base \
    --task_name MSMarco \
    --do_train \
    --evaluate_during_training \
    --data_dir ${location of your raw data}  
    --max_seq_length 128 
    --per_gpu_eval_batch_size=256 \
    --per_gpu_train_batch_size=32 \
    --learning_rate 2e-4  \
    --logging_steps 100   \
    --num_train_epochs 2.0  \
    --output_dir ${location for checkpoint saving} \
    --warmup_steps 1000  \
    --overwrite_output_dir \
    --save_steps 30000 \
    --gradient_accumulation_steps 1 \
    --expected_train_size 35000000 \
    --logging_steps_per_eval 1 \
    --fp16 \
    --optimizer lamb \
    --log_dir ~/tensorboard/${DLWS_JOB_ID}/logs/OSpass

Training

To train the model(s) in the paper, you need to start two commands in the following order:

  1. run commands/run_train.sh which does three things in a sequence:

    a. Data preprocessing: this is explained in the previous data preprocessing section. This step will check if the preprocess data folder exists, and will be skipped if the checking is positive.

    b. Initial ANN data generation: this step will use the pretrained BM25 warmup checkpoint to generate the initial training data. The command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann_data_gen.py 
     --training_dir {# checkpoint location, not used for initial data generation} \ 
     --init_model_dir {pretrained BM25 warmup checkpoint location} \ 
     --model_type rdot_nll \
     --output_dir $model_ann_data_dir \
     --cache_dir $model_ann_data_dir_cache \
     --data_dir $preprocessed_data_dir \
     --max_seq_length 512 \
     --per_gpu_eval_batch_size 16 \
     --topk_training {top k candidates for ANN search(ie:200)} \ 
     --negative_sample {negative samples per query(20)} \ 
     --end_output_num 0 # only set as 0 for initial data generation, do not set this otherwise
    

    c. Training: ANCE training with the most recently generated ANN data, the command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann.py 
     --model_type rdot_nll \
     --model_name_or_path $pretrained_checkpoint_dir \
     --task_name MSMarco \
     --triplet {# default = False, action="store_true", help="Whether to run training}\ 
     --data_dir $preprocessed_data_dir \
     --ann_dir {location of the ANN generated training data} \ 
     --max_seq_length 512 \
     --per_gpu_train_batch_size=8 \
     --gradient_accumulation_steps 2 \
     --learning_rate 1e-6 \
     --output_dir $model_dir \
     --warmup_steps 5000 \
     --logging_steps 100 \
     --save_steps 10000 \
     --optimizer lamb 
    
  2. Once training starts, start another job in parallel to fetch the latest checkpoint from the ongoing training and update the training data. To do that, run

     bash commands/run_ann_data_gen.sh
    

    The command is similar to the initial ANN data generation command explained previously

Inference

The command for inferencing query and passage/doc embeddings is the same as that for Initial ANN data generation described above as the first step in ANN data generation is inference. However you need to add --inference to the command to have the program to stop after the initial inference step. commands/run_inference.sh provides a sample command.

Evaluation

The evaluation is done through "Calculate Metrics.ipynb". This notebook calculates full ranking and reranking metrics used in the paper including NDCG, MRR, hole rate, recall for passage/document, dev/eval set specified by user. In order to run it, you need to define the following parameters at the beginning of the Jupyter notebook.

    checkpoint_path = {location for dumpped query and passage/document embeddings which is output_dir from run_ann_data_gen.py}
    checkpoint =  {embedding from which checkpoint(ie: 200000)}
    data_type =  {0 for document, 1 for passage}
    test_set =  {0 for MSMARCO dev_set, 1 for TREC eval_set}
    raw_data_dir = 
    processed_data_dir = 

ANCE VS DPR on OpenQA Benchmarks

We also evaluate ANCE on the OpenQA benchmark used in a parallel work (DPR). At the time of our experiment, only the pre-processed NQ and TriviaQA data are released. Our experiments use the two released tasks and inherit DPR retriever evaluation. The evaluation uses the [email protected]/100 which is whether the Top-20/100 retrieved passages include the answer. We explain the steps to reproduce our results on OpenQA Benchmarks in this section.

Download data

commands/data_download.sh takes care of this step.

ANN data generation & ANCE training

Following the same training philosophy discussed before, the ann data generation and ANCE training for OpenQA require two parallel jobs.

  1. We need to preprocess data and generate an initial training set for ANCE to start training. The command for that is provided in:
commands/run_ann_data_gen_dpr.sh

We keep this data generation job running after it creates an initial training set as it will later keep generating training data with newest checkpoints from the training process.

  1. After an initial training set is generated, we start an ANCE training job with commands provided in:
commands/run_train_dpr.sh

During training, the evaluation metrics will be printed to tensorboards each time it receives new training data. Alternatively, you could check the metrics in the dumped file "ann_ndcg_#" in the directory specified by "model_ann_data_dir" in commands/run_ann_data_gen_dpr.sh each time new training data is generated.

Results

The run_train.sh and run_ann_data_gen.sh files contain the command with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document ANCE(MaxP) Our model achieves the following performance on MSMARCO dev set and TREC eval set :

MSMARCO Dev Passage Retrieval [email protected] [email protected] Steps
ANCE(FirstP) 0.330 0.959 600K
ANCE(MaxP) - - -
TREC DL Passage [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.677 0.648 600K
ANCE(MaxP) - - -
TREC DL Document [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.641 0.615 210K
ANCE(MaxP) 0.671 0.628 139K
MSMARCO Dev Passage Retrieval [email protected] Steps
pretrained BM25 warmup checkpoint 0.311 60K
ANCE Single-task Training Top-20 Top-100 Steps
NQ 81.9 87.5 136K
TriviaQA 80.3 85.3 100K
ANCE Multi-task Training Top-20 Top-100 Steps
NQ 82.1 87.9 300K
TriviaQA 80.3 85.2 300K

Click the steps in the table to download the corresponding checkpoints.

Our result for document ANCE(FirstP) TREC eval set top 100 retrieved document per query could be downloaded here. Our result for document ANCE(MaxP) TREC eval set top 100 retrieved document per query could be downloaded here.

The TREC eval set query embedding and their ids for our passage ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document 2048 ANCE(MaxP) experiment could be downloaded here.

The t-SNE plots for all the queries in the TREC document eval set for ANCE(FirstP) could be viewed here.

run_train.sh and run_ann_data_gen.sh files contain the commands with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document 2048 ANCE(MaxP) to reproduce the results in this section. run_train_warmup.sh contains the commands to reproduce the results for the pretrained BM25 warmup checkpoint in this section

Note the steps to reproduce similar results as shown in the table might be a little different due to different synchronizing between training and ann data generation processes and other possible environment differences of the user experiments.

Owner
John
My research interests are machine learning and recommender systems.
John
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Codes for “A Deeply Supervised Attention Metric-Based Network and an Open Aerial Image Dataset for Remote Sensing Change Detection”

DSAMNet The pytorch implementation for "A Deeply-supervised Attention Metric-based Network and an Open Aerial Image Dataset for Remote Sensing Change

Mengxi Liu 41 Dec 14, 2022
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022