Kaggle DSTL Satellite Imagery Feature Detection

Overview

DSTL

https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/

Note: this repo is not supported. License is MIT.

Object types

Note that labels here are 1 less than in submission file:

  • 0: Buildings - large building, residential, non-residential, fuel storage facility, fortified building
  • 1: Misc. Manmade structures
  • 2: Road
  • 3: Track - poor/dirt/cart track, footpath/trail
  • 4: Trees - woodland, hedgerows, groups of trees, standalone trees
  • 5: Crops - contour ploughing/cropland, grain (wheat) crops, row (potatoes, turnips) crops
  • 6: Waterway
  • 7: Standing water
  • 8: Vehicle Large - large vehicle (e.g. lorry, truck, bus), logistics vehicle
  • 9: Vehicle Small - small vehicle (car, van), motorbike

General approach

UNet network with batch-normalization added, training with Adam optimizer with a loss that is a sum of 0.1 cross-entropy and 0.9 dice loss. Input for UNet was a 116 by 116 pixel patch, output was 64 by 64 pixels, so there were 16 additional pixels on each side that just provided context for the prediction. Batch size was 128, learning rate was set to 0.0001 (but loss was multiplied by the batch size). Learning rate was divided by 5 on the 25-th epoch and then again by 5 on the 50-th epoch, most models were trained for 70-100 epochs. Patches that formed a batch were selected completely randomly across all images. During one epoch, network saw patches that covered about one half of the whole training set area. Best results for individual classes were achieved when training on related classes, for example buildings and structures, roads and tracks, two kinds of vehicles.

Augmentations included small rotations for some classes (±10-25 degrees for houses, structures and both vehicle classes), full rotations and vertical/horizontal flips for other classes. Small amount of dropout (0.1) was used in some cases. Alignment between channels was fixed with the help of cv2.findTransformECC, and lower-resolution layers were upscaled to match RGB size. In most cases, 12 channels were used (RGB, P, M), while in some cases just RGB and P or all 20 channels made results slightly better.

Validation

Validation was very hard, especially for both water and both vehicle classes. In most cases, validation was performed on 5 images (6140_3_1, 6110_1_2, 6160_2_1, 6170_0_4, 6100_2_2), while other 20 were used for training. Re-training the model with the same parameters on all 25 images improved LB score.

Some details

  • This setup provides good results for small-scale classes (houses, structures, small vehicles), reasonable results for most other classes and overfits quite badly on waterway.
  • Man-made structures performed significantly better if training polygons were made bigger by 0.5 pixel before producing training masks.
  • For some classes (e.g. vehicles), it helped a bit to make the first downscaling in UNet 4x instead of default 2x, and also made training 1.5x faster.
  • Averaging of predictions (of one model) with small shifts (1/3 of the 64 pixel step) were used for some classes.
  • Predictions on the edges of the input image (closer than 16 pixels to the border) were bad for some classes and were left empty in this case.
  • All models were implemented in pytorch, training for 70 epochs took about 5 hours, submission generation took about 30 minutes without averaging, or about 5 hours with averaging.

Other things tried

A lot of things that either did not bring noticeable improvements, or made things worse:

  • Losses: jaccard instead of dice, trying to predict distance to the border of the objects.
  • Color augmentations.
  • Oversampling of rare classes.
  • Passing lower-resolution channels directly to lower-resolution layers in UNet.
  • Varying UNet filter sizes, activations, number of layers and upscale/downscale steps, using deconvolutions instead of upsampling.
  • Learning rate decay.
  • Models: VGG-like modules for UNet, SegNet, DenseNet

Object types stats

Area by classs:

im_id 0 1 2 3 4 5 6 7 8 9
6010_1_2 0.0% 0.0653% 0.0% 1.3345% 4.5634% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_2 0.0% 0.0% 0.0% 1.9498% 12.3410% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_4 0.0% 0.0% 0.0% 0.0% 22.8556% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_0 0.0% 0.0% 0.0% 1.4446% 8.0062% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_3 0.0% 0.0% 0.0% 0.2019% 18.7376% 3.6610% 0.0% 0.0% 0.0% 0.0%
6040_2_2 0.0% 0.0% 0.0% 0.9581% 18.7348% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_4_4 0.0% 0.0% 0.0% 1.8893% 2.9152% 0.0% 0.0% 0.0% 0.0% 0.0%
6060_2_3 0.1389% 0.3037% 0.0% 3.0302% 8.4519% 93.5617% 0.0% 0.0% 0.0% 0.0003%
6070_2_3 1.5524% 0.3077% 0.8135% 0.0% 16.0439% 0.0% 10.6325% 0.0543% 0.0% 0.0058%
6090_2_0 0.0% 0.0343% 0.0% 0.4072% 10.1105% 28.2399% 0.0% 0.3130% 0.0% 0.0008%
6100_1_3 8.7666% 2.7289% 2.2145% 12.2506% 6.2015% 2.6901% 0.0% 0.6839% 0.0110% 0.0459%
6100_2_2 3.1801% 0.8188% 1.1903% 3.7222% 7.6089% 44.3148% 1.8823% 0.0512% 0.0100% 0.0242%
6100_2_3 8.2184% 1.4110% 1.2099% 9.5948% 7.5323% 0.0% 0.0% 0.0603% 0.0148% 0.0661%
6110_1_2 13.1314% 2.8616% 0.4192% 4.1817% 3.3154% 49.7792% 0.0% 0.1527% 0.0% 0.0065%
6110_3_1 4.5495% 1.2561% 3.6302% 2.8221% 5.4133% 57.6089% 0.0% 0.5531% 0.0181% 0.0253%
6110_4_0 2.4051% 0.5732% 1.8409% 2.8067% 5.7379% 80.7666% 0.0% 1.4210% 0.0136% 0.0017%
6120_2_0 1.7980% 0.7257% 0.8505% 4.4026% 5.6352% 79.5910% 0.0% 0.0% 0.0138% 0.0041%
6120_2_2 20.6570% 2.0389% 4.2547% 8.6533% 4.4347% 10.2929% 0.0% 0.2859% 0.0076% 0.1560%
6140_1_2 12.9211% 2.4488% 0.3538% 4.1461% 3.1027% 49.5910% 0.0% 0.1415% 0.0% 0.0086%
6140_3_1 5.2015% 1.4349% 3.4252% 2.5189% 5.8852% 57.3959% 0.0% 0.4664% 0.0042% 0.0358%
6150_2_3 0.0% 0.6055% 0.0% 3.0197% 13.5187% 80.6649% 0.0% 0.0% 0.0% 0.0%
6160_2_1 0.0% 0.0% 0.0% 2.7986% 10.2713% 0.0% 0.0% 0.0% 0.0% 0.0%
6170_0_4 0.0% 0.0016% 0.0% 0.1994% 24.8913% 0.0% 0.0% 0.0152% 0.0% 0.0%
6170_2_4 0.0% 0.0011% 0.0% 2.5070% 7.7844% 49.5326% 0.0% 0.0089% 0.0% 0.0%
6170_4_1 0.0% 0.0% 0.0% 0.1349% 20.2214% 0.0% 0.0% 0.0% 0.0% 0.0%

Making a submission

Train a CNN (choose number of epochs and other hyper-params running without --all):

$ ./train.py checkpoint-folder --all --hps dice_loss=10,n_epochs=70

Make submission file (check hyperparameters doing a submission for the model trained with validation by running with --validation *value* and optionally --valid-polygons):

$ ./make_submission.py checkpoint-folder submission.csv.gz

Finally, use ./merge_submission.py to produce the final submission.

This just gives a general idea, real submissions were generated with different hyperparameters for different classes, and all above commands have more options that are documented in the commands themselves (use --help, check the code if in doubt).

Owner
Konstantin Lopuhin
Konstantin Lopuhin
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023