YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

Related tags

Deep Learningyoltv4
Overview

YOLTv4

Alt text

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitrarily large images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

This repository is built upon the impressive work of AlexeyAB's YOLOv4 implementation, which improves both speed and detection performance compared to YOLOv3 (which is implemented in SIMRDWN). We use YOLOv4 insead of "YOLOv5", since YOLOv4 is endorsed by the original creators of YOLO, whereas "YOLOv5" is not; furthermore YOLOv4 appears to have superior performance.

Below, we provide examples of how to use this repository with the open-source Rareplanes dataset.


Running YOLTv4


0. Installation

YOLTv4 is built to execute within a docker container on a GPU-enabled machine. The docker command creates an Ubuntu 16.04 image with CUDA 9.2, python 3.6, and conda.

  1. Clone this repository (e.g. to /yoltv4/).

  2. Download model weights to yoltv4/darknet/weights). See: https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.conv.137 https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.conv.142

  3. Install nvidia-docker.

  4. Build docker file.

     nvidia-docker build -t yoltv4_image /yoltv4/docker
    
  5. Spin up the docker container (see the docker docs for options).

     NV_GPU=0 nvidia-docker run -it -v /local_data:/local_data -v /yoltv4:/yoltv4 -ti --ipc=host --name yoltv4_gpu0 yoltv4_image
    
  6. Compile the Darknet C program.

    First Set GPU=1 CUDNN=1, CUDNN_HALF=1, OPENCV=1 in /yoltv4/darknet/Makefile, then make:

     cd /yoltv4/darknet
     make
    

1. Train

A. Prepare Data

  1. Make YOLO images and labels (see yoltv4/notebooks/train_test_pipeline.ipynb for further details).

  2. Create a txt file listing the training images.

  3. Create file obj.names file with each desired object name on its own line.

  4. Create file obj.data in the directory yoltv4/darknet/data containing necessary files. For example:

    /yoltv4/darknet/data/rareplanes_train.data

     classes = 30
     train =  /local_data/cosmiq/wdata/rareplanes/train/txt/train.txt
     valid =  /local_data/cosmiq/wdata/rareplanes/train/txt/valid.txt
     names =  /yoltv4/darknet/data/rareplanes.name
     backup = backup/
    
  5. Prepare config files.

    See instructions here, or tweak /yoltv4/darknet/cfg/yoltv4_rareplanes.cfg.

B. Execute Training

  1. Execute.

     cd /yoltv4/darknet
     time ./darknet detector train data/rareplanes_train.data  cfg/yoltv4_rareplanes.cfg weights/yolov4.conv.137  -dont_show -mjpeg_port 8090 -map
    
  2. Review progress (plotted at: /yoltv4/darknet/chart_yoltv4_rareplanes.png).


2. Test

A. Prepare Data

  1. Make sliced images (see yoltv4/notebooks/train_test_pipeline.ipynb for further details).

  2. Create a txt file listing the training images.

  3. Create file obj.data in the directory yoltv4/darknet/data containing necessary files. For example:

    /yoltv4/darknet/data/rareplanes_test.data classes = 30 train = valid = /local_data/cosmiq/wdata/rareplanes/test/txt/test.txt names = /yoltv4/darknet/data/rareplanes.name backup = backup/

B. Execute Testing

  1. Execute (proceeds at >80 frames per second on a Tesla P100):

     cd /yoltv4/darknet
     time ./darknet detector valid data/rareplanes_test.data cfg/yoltv4_rareplanes.cfg backup/ yoltv4_rareplanes_best.weights
    
  2. Post-process detections:

    A. Move detections into results directory

     mkdir /yoltv4/darknet/results/rareplanes_preds_v0
     mkdir  /yoltv4/darknet/results/rareplanes_preds_v0/orig_txt
     mv /yoltv4/darknet/results/comp4_det_test_*  /yoltv4/darknet/results/rareplanes_preds_v0/orig_txt/
    

    B. Stitch detections back together and make plots

     time python /yoltv4/yoltv4/post_process.py \
         --pred_dir=/yoltv4/darknet/results/rareplanes_preds_v0/orig_txt/ \
         --raw_im_dir=/local_data/cosmiq/wdata/rareplanes/test/images/ \
         --sliced_im_dir=/local_data/cosmiq/wdata/rareplanes/test/yoltv4/images_slice/ \
         --out_dir= /yoltv4/darknet/results/rareplanes_preds_v0 \
         --detection_thresh=0.25 \
         --slice_size=416} \
         --n_plots=8
    

Outputs will look something like the figures below:

Alt text

Alt text

Alt text

Owner
Adam Van Etten
Adam Van Etten
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021