Refactoring dalle-pytorch and taming-transformers for TPU VM

Overview

Text-to-Image Translation (DALL-E) for TPU in Pytorch

Refactoring Taming Transformers and DALLE-pytorch for TPU VM with Pytorch Lightning

Requirements

pip install -r requirements.txt

Data Preparation

Place any image dataset with ImageNet-style directory structure (at least 1 subfolder) to fit the dataset into pytorch ImageFolder.

Training VQVAEs

You can easily test main.py with randomly generated fake data.

python train_vae.py --use_tpus --fake_data

For actual training provide specific directory for train_dir, val_dir, log_dir:

python train_vae.py --use_tpus --train_dir [training_set] --val_dir [val_set] --log_dir [where to save results]

Training DALL-E

python train_dalle.py --use_tpus --train_dir [training_set] --val_dir [val_set] --log_dir [where to save results] --vae_path [pretrained vae] --bpe_path [pretrained bpe(optional)]

TODO

  • Refactor Encoder and Decoder modules for better readability
  • Refactor VQVAE2
  • Add Net2Net Conditional Transformer for conditional image generation
  • Refactor, optimize, and merge DALL-E with Net2Net Conditional Transformer
  • Add Guided Diffusion + CLIP for image refinement
  • Add VAE converter for JAX to support dalle-mini
  • Add DALL-E colab notebook
  • Add RBGumbelQuantizer
  • Add HiT

ON-GOING

  • Test large dataset loading on TPU Pods
  • Change current DALL-E code to fully support latest updates from DALLE-pytorch

DONE

  • Add VQVAE, VQGAN, and Gumbel VQVAE(Discrete VAE), Gumbel VQGAN
  • Add VQVAE2
  • Add EMA update for Vector Quantization
  • Debug VAEs (Single TPU Node, TPU Pods, GPUs)
  • Resolve SIGSEGV issue with large TPU Pods pytorch-xla #3028
  • Add DALL-E
  • Debug DALL-E (Single TPU Node, TPU Pods, GPUs)
  • Add WebDataset support
  • Add VAE Image Logger by modifying pl_bolts TensorboardGenerativeModelImageSampler()
  • Add DALLE Image Logger by modifying pl_bolts TensorboardGenerativeModelImageSampler()
  • Add automatic checkpoint saver and resume for sudden (which happens a lot) TPU restart
  • Reimplement EMA VectorQuantizer with nn.Embedding
  • Add DALL-E colab notebook by afiaka87
  • Add Normed Vector Quantizer by GallagherCommaJack
  • Resolve SIGSEGV issue with large TPU Pods pytorch-xla #3068
  • Debug WebDataset functionality

BibTeX

@misc{oord2018neural,
      title={Neural Discrete Representation Learning}, 
      author={Aaron van den Oord and Oriol Vinyals and Koray Kavukcuoglu},
      year={2018},
      eprint={1711.00937},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@misc{razavi2019generating,
      title={Generating Diverse High-Fidelity Images with VQ-VAE-2}, 
      author={Ali Razavi and Aaron van den Oord and Oriol Vinyals},
      year={2019},
      eprint={1906.00446},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation}, 
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Owner
Kim, Taehoon
Research Scientist & Machine Learning Engineer.
Kim, Taehoon
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022