Multivariate Time Series Transformer, public version

Overview

Multivariate Time Series Transformer Framework

This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariate Time Series Representation Learning, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '21), August 14-18, 2021. ArXiV version: https://arxiv.org/abs/2010.02803

If you find this code or any of the ideas in the paper useful, please consider citing:

@inproceedings{10.1145/3447548.3467401,
author = {Zerveas, George and Jayaraman, Srideepika and Patel, Dhaval and Bhamidipaty, Anuradha and Eickhoff, Carsten},
title = {A Transformer-Based Framework for Multivariate Time Series Representation Learning},
year = {2021},
isbn = {9781450383325},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3447548.3467401},
doi = {10.1145/3447548.3467401},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining},
pages = {2114–2124},
numpages = {11},
keywords = {regression, framework, multivariate time series, classification, transformer, deep learning, self-supervised learning, unsupervised learning, imputation},
location = {Virtual Event, Singapore},
series = {KDD '21}
}

Setup

Instructions refer to Unix-based systems (e.g. Linux, MacOS).

cd mvts_transformer/

Inside an already existing root directory, each experiment will create a time-stamped output directory, which contains model checkpoints, performance metrics per epoch, predictions per sample, the experiment configuration, log files etc. The following commands assume that you have created a new root directory inside the project directory like this: mkdir experiments.

[We recommend creating and activating a conda or other Python virtual environment (e.g. virtualenv) to install packages and avoid conficting package requirements; otherwise, to run pip, the flag --user or sudo privileges will be necessary.]

pip install -r requirements.txt

[Note: Because sometimes newer versions of packages break backward compatibility with previous versions or other packages, instead or requirements.txt you can use failsafe_requirements.txt to use the versions which have been tested to work with this codebase.]

Download dataset files and place them in separate directories, one for regression and one for classification.

Classification: http://www.timeseriesclassification.com/Downloads/Archives/Multivariate2018_ts.zip

Regression: https://zenodo.org/record/3902651#.YB5P0OpOm3s

Example commands

To see all command options with explanations, run: python src/main.py --help

You should replace $1 below with the name of the desired dataset. The commands shown here specify configurations intended for BeijingPM25Quality for regression and SpokenArabicDigits for classification.

[To obtain best performance for other datasets, use the hyperparameters as given in the Supplementary Material of the paper. Appropriate downsampling with the option --subsample_factor can be often used on datasets with longer time series to speedup training, without significant performance degradation.]

The configurations as shown below will evaluate the model on the TEST set periodically during training, and at the end of training.

Besides the console output and the logfile output.log, you can monitor the evolution of performance (after installing tensorboard: pip install tensorboard) with:

tensorboard dev upload --name my_exp --logdir path/to/output_dir

Train models from scratch

Regression

(Note: the loss reported for regression is the Mean Square Error, i.e. without the Root)

python src/main.py --output_dir path/to/experiments --comment "regression from Scratch" --name $1_fromScratch_Regression --records_file Regression_records.xls --data_dir path/to/Datasets/Regression/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam  --pos_encoding learnable --task regression

Classification

python src/main.py --output_dir experiments --comment "classification from Scratch" --name $1_fromScratch --records_file Classification_records.xls --data_dir path/to/Datasets/Classification/$1/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 400 --lr 0.001 --optimizer RAdam  --pos_encoding learnable  --task classification  --key_metric accuracy

Pre-train models (unsupervised learning through input masking)

Can be used for any downstream task, e.g. regression, classification, imputation.

Make sure that the network architecture parameters of the pretrained model match the parameters of the desired fine-tuned model (e.g. use --d_model 64 for SpokenArabicDigits).

python src/main.py --output_dir experiments --comment "pretraining through imputation" --name $1_pretrained --records_file Imputation_records.xls --data_dir /path/to/$1/ --data_class tsra --pattern TRAIN --val_ratio 0.2 --epochs 700 --lr 0.001 --optimizer RAdam --batch_size 32 --pos_encoding learnable --d_model 128

Fine-tune pretrained models

Make sure that network architecture parameters (e.g. d_model) used to fine-tune a model match the pretrained model.

Regression

python src/main.py --output_dir experiments --comment "finetune for regression" --name BeijingPM25Quality_finetuned --records_file Regression_records.xls --data_dir /path/to/Datasets/Regression/BeijingPM25Quality/ --data_class tsra --pattern TRAIN --val_pattern TEST  --epochs 200 --lr 0.001 --optimizer RAdam --pos_encoding learnable --d_model 128 --load_model path/to/BeijingPM25Quality_pretrained/checkpoints/model_best.pth --task regression --change_output --batch_size 128

Classification

python src/main.py --output_dir experiments --comment "finetune for classification" --name SpokenArabicDigits_finetuned --records_file Classification_records.xls --data_dir /path/to/Datasets/Classification/SpokenArabicDigits/ --data_class tsra --pattern TRAIN --val_pattern TEST --epochs 100 --lr 0.001 --optimizer RAdam --batch_size 128 --pos_encoding learnable --d_model 64 --load_model path/to/SpokenArabicDigits_pretrained/checkpoints/model_best.pth --task classification --change_output --key_metric accuracy
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022