Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

Overview

dcf-game-infrastructure

All the components necessary to run a game of the OOO DC CTF finals.

Authors: adamd, hacopo, Erik Trickel, Zardus, and bboe

Design Philosophy

This repo contains all the game components necessary to run an Attack-Defense CTF that OOO used from 2018--2021.

The design is based on adamd's experience building the ictf-framework.

There are fundamental tenenats that we try to follow in the design of the system:

Spoke component model

The communication design of the components in the system (which you can kind of think of as micro-services) is a "spoke" model, where every component talks to the database (through a RESTish API), and no component directly talks to any other.

In this way, each component can be updated separately and can also be scaled independently using our k8s hosting.

This also made testing of each component easier, as the only dependence on a component is on the state of the database.

The only exception to this is the patchbot (the component that needs to test the patches submitted by the teams).

The database API puts the patchbot testing jobs into an RQ (Redis Queue), which all the patchbot workers pull jobs from.

Append-only database design

Fundamentally, a CTF database needs to calculate scores (that's essentially what the teams care about).

Prior design approaches that we've used would have a points or score column in the team table, and when they acquired or lost points, the app code would change this value.

However, many crazy things can happen during a CTF: recalculating scores or missed flags, even changing the scoring functions itself.

These can be difficult to handle depending on how the system is developed.

Therefore, we created a completely append-only database model, where no data in the DB is ever deleted or changed.

Even things like service status (the GOOD, OK, LOW, BAD that we used) is not a column in the services table. Every change of status would created a new StatusIndicator row, and the services would pull the latest version from this table.

Event model

Related to the append-only database design, everything in the database was represented by events.

The database would store all game events (in our game over the years was SLA_SCRIPT, FLAG_STOLEN, SET_FLAG, KOH_SCORE_FETCH, KOH_RANKING, PCAP_CREATED, PCAP_RELEASED, and STEALTH).

Then, the state of the game is based on these events.

An additional benefit is that these events could be shipped to the teams as part of the game_state.json.

Separate k8s clusters

How we ran this is with two k8s clusters: an admin cluster and a game cluster.

The admin cluster ran all of these components.

The game cluster ran all of the CTF challenges.

We used this design to do things like drop flags on the services. The flagbot used kubectl to drop a flag onto a service running in the other cluster.

This also allowed us to lock down the game cluster so that the vulnerable services couldn't make external requests, could be scaled separately, etc.

Install Requirements

This package is pip installable, and installs all dependencies. Do the following in a virtualenv:

$ pip install -e .

NOTE: If you want to connect to a mysql server (such as in prod or when deving against a mysql server), install the mysqlclient dependency like so:

$ pip install -e .[mysql]

Testing

Make sure the tests pass before you commit, and add new test cases in test for new features.

Note the database API now checks that the timezone is in UTC, so you'll need to specify that to run the tests:

$ TZ=UTC nosetests -v

Local Dev

If you're using tmux, I created a script local_dev.sh that will run a database-api, database-api frontend, team-interface backend, team-interface frontend, gamebot, and an ipython session with a database client created.

Just run the following

$ ./local_dev.sh

Deploy to prod

Build and -p push the image to production registry.

$ ./deploy.sh -p

Won't -r restart the running services, need to do:

$ ./deploy.sh -p -r

database-api

This has the tables for the database, a REST API to access it, and a python client to access the REST API.

See ooogame/database for details.

flagbot

Responsible for putting new flags into all the services for every game tick.

See ooogame/flagbot for details.

fresh-flagbot

Responsible for putting a new flags into a pod when it first comes up (from a team patching the service).

See ooogame/fresh_flagbot for details.

gamebot

Responsible for incrementing the game's ticks.

See ooogame/gamebot for details.

koh-scorebot

Responsible for extracting the King of the Hill (koh) scores from all the koh pods every tick, and submitting them to the database.

See ooogame/koh_scorebot for details.

team-interface

Responsible for providing an interface to the teams so that they can submit flags, get pcaps, upload patches, and get their patch status. Split into a backend flask REST API, which essentially wraps the database-api, and a React frontend.

See ooogame/team_interface for details.

pcapbot

Responsible for picking up all the newly generated pcaps, anonymize them, and if the service is releasing pcaps then release them.

See ooogame/pcapbot for details.

gamestatebot

Responsible for creating the game state at every new tick and storing them in the nfs, and release them publicly.

See ooogame/gamestatebot for details.

This is also the component that pushes data to the public scoreboard

Owner
Order of the Overflow
Order of the Overflow
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022