UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

Overview

License CC BY-NC-SA 4.0

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network.

mona

paper: Unsupervised Image-to-Image Translation via Pre-trained StyleGAN2 Network

Prerequisite

  • PyTorch 1.3.1
  • CUDA 10.1

Step 1: Model Fine-tuning

To obtain the target model, you need to follow the instruction of data preparation stated in the StyleGAN2 pytorch implementation here

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

And fine-tune the model with data in the target domain:

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --batch BATCH_SIZE LMDB_PATH --ckpt your_base_model_path

Step 2: Closed-Form GAN space

Calculate the GAN space via the proposed algorithm, and a factor can then be obtained. python3 closed_form_factorization.py --ckpt your_model --out output_factor_path

Step 3: Image inversion

Inverse the image to a latent code based on the StyleGAN2 model trained on its domain python3 project_factor.py --ckpt stylegan_model_path --fact factor_path IMAGE_FILE

Step 4: LS Image generation with multiple styles

We use the inversed code to generate images with multiple style in the target domain

python3 gen_multi_style.py --model base_model_path --model2 target_model_path --fact base_inverse.pt --fact_base factor_from_base_model -o output_path --swap_layer 3 --stylenum 10

In additon to multi-modal translation, the style of the output can be specified by reference. To achieve this, we need to inverse the reference image as well since its latent code would then be used as style code in the generation.

python3 gen_ref.py --model1 base_model_path --model2 target_model_path --fact base_inverse.pt --fac_ref reference_inverse.pt --fact_base1 factor_from_base_model --fact_base2 factor_from_target_model -o output_path

pre-trained base model and dataset

We use the StyleGAN2 face models trained on FFHQ, 256x256 (by @rosinality). And the 1024x1024 can be found in the StyleGAN2 official implementation, model conversion between TF and Pytorch is needed. Models fine-tuned on such models can be used for I2I translation, though with FreezeFC they can achieve better results.

Many thanks to Gwern for providing the Anime dataset Danbooru and Doron Adler and Justin Pinkney for providing the cartoon dataset.

Some Results

cartoon2face1 cartoon2face2 cartoon2face3 cartoon2face4 face2portrait1 face2portrait2

The code is heavily borrowed from StyleGAN2 implementation (rosality's StyleGAN2 implementation) and close-form Factorization, thanks to their great work and contribution!

Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: įŽ€äŊ“中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
pytorch implementation of fast-neural-style

fast-neural-style 🌇 🚀 NOTICE: This codebase is no longer maintained, please use the codebase from pytorch examples repository available at pytorch/e

Abhishek Kadian 405 Dec 15, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022