precise iris segmentation

Overview

PI-DECODER

Introduction

PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below:

PI-DECODER

Please check technical paper.pdf in the "reference" subfolder for more details.

How to use?

For african dataset, you can enter the following script on your terminal:

python main.py --mode test --model_path ./models/african_best.pth --test_mode 1 --train_dataset african

Then you have iris mask, pupil mask and outer iris mask that are predicted by the input images. At the same time, the relevant index data will be displayed on your terminal.

(ijcb) PS F:\workspace\code\pytorch\PI-DECODER> python main.py --mode test --model_path ./models/african_best.pth --
test_mode 1 --train_dataset african
Namespace(batch_size=1, beta1=0.9, beta2=0.999, img_size=(640, 640), lr=0.0002, mode='test', model_path='./models/af
rican_best.pth', num_epochs=100, num_workers=2, result_path='./result/', test_mode=1, test_path='./dataset/test/', t
rain_dataset='african', train_path='./dataset/train/', valid_path='./dataset/valid/')
image count in train path :5
image count in valid path :5
image count in test path :40
Using Model: PI-DECODER
0.0688 seconds per image

----------------------------------------------------------------------------------------------------------------
|evaluation     |e1(%)          |e2(%)          |miou(%)        |f1(%)          |miou_back      |f1_back        |
----------------------------------------------------------------------------------------------------------------
|iris seg       |0.384026       |0.192013       |91.175200      |95.350625      |95.386805      |97.574698      |
|iris mask      |0.569627       |0.284813       |93.159855      |96.430411      |96.270919      |98.060105      |
|pupil mask     |0.078793       |0.039396       |93.138878      |96.409347      |96.529547      |98.184718      |
----------------------------------------------------------------------------------------------------------------
|average        |0.344149       |0.172074       |92.491311      |96.063461      |96.062424      |97.939840      |
----------------------------------------------------------------------------------------------------------------

Besides, if you don't have groud-truth files or just want to save the results, use test mode 2.

python main.py --mode test --model_path ./models/african_best.pth --test_mode 2 --train_dataset african

Requirements

The whole experiment was run on the NVIDIA RTX 3060. The following are recommended environment configurations.

matplotlib        3.3.4
numpy             1.19.5
opencv-python     4.5.1.48
pandas            1.1.5
Pillow            8.1.2
pip               21.0.1
pyparsing         2.4.7
python-dateutil   2.8.1
pytz              2021.1
scipy             1.5.4
setuptools        52.0.0.post20210125
six               1.15.0
thop              0.0.31.post2005241907
torch             1.7.0+cu110
torchstat         0.0.7
torchsummary      1.5.1
torchvision       0.8.1+cu110
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022