precise iris segmentation

Overview

PI-DECODER

Introduction

PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below:

PI-DECODER

Please check technical paper.pdf in the "reference" subfolder for more details.

How to use?

For african dataset, you can enter the following script on your terminal:

python main.py --mode test --model_path ./models/african_best.pth --test_mode 1 --train_dataset african

Then you have iris mask, pupil mask and outer iris mask that are predicted by the input images. At the same time, the relevant index data will be displayed on your terminal.

(ijcb) PS F:\workspace\code\pytorch\PI-DECODER> python main.py --mode test --model_path ./models/african_best.pth --
test_mode 1 --train_dataset african
Namespace(batch_size=1, beta1=0.9, beta2=0.999, img_size=(640, 640), lr=0.0002, mode='test', model_path='./models/af
rican_best.pth', num_epochs=100, num_workers=2, result_path='./result/', test_mode=1, test_path='./dataset/test/', t
rain_dataset='african', train_path='./dataset/train/', valid_path='./dataset/valid/')
image count in train path :5
image count in valid path :5
image count in test path :40
Using Model: PI-DECODER
0.0688 seconds per image

----------------------------------------------------------------------------------------------------------------
|evaluation     |e1(%)          |e2(%)          |miou(%)        |f1(%)          |miou_back      |f1_back        |
----------------------------------------------------------------------------------------------------------------
|iris seg       |0.384026       |0.192013       |91.175200      |95.350625      |95.386805      |97.574698      |
|iris mask      |0.569627       |0.284813       |93.159855      |96.430411      |96.270919      |98.060105      |
|pupil mask     |0.078793       |0.039396       |93.138878      |96.409347      |96.529547      |98.184718      |
----------------------------------------------------------------------------------------------------------------
|average        |0.344149       |0.172074       |92.491311      |96.063461      |96.062424      |97.939840      |
----------------------------------------------------------------------------------------------------------------

Besides, if you don't have groud-truth files or just want to save the results, use test mode 2.

python main.py --mode test --model_path ./models/african_best.pth --test_mode 2 --train_dataset african

Requirements

The whole experiment was run on the NVIDIA RTX 3060. The following are recommended environment configurations.

matplotlib        3.3.4
numpy             1.19.5
opencv-python     4.5.1.48
pandas            1.1.5
Pillow            8.1.2
pip               21.0.1
pyparsing         2.4.7
python-dateutil   2.8.1
pytz              2021.1
scipy             1.5.4
setuptools        52.0.0.post20210125
six               1.15.0
thop              0.0.31.post2005241907
torch             1.7.0+cu110
torchstat         0.0.7
torchsummary      1.5.1
torchvision       0.8.1+cu110
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022