Korean Sentence Embedding Repository

Overview

Korean-Sentence-Embedding

๐Ÿญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.

Baseline Models

Baseline models used for korean sentence embedding - KLUE-PLMs

Model Embedding size Hidden size # Layers # Heads
KLUE-BERT-base 768 768 12 12
KLUE-RoBERTa-base 768 768 12 12

NOTE: All the pretrained models are uploaded in Huggingface Model Hub. Check https://huggingface.co/klue.

How to start

  • Get datasets to train or test.
bash get_model_dataset.sh
  • If you want to do inference quickly, download the pre-trained models and then you can start some downstream tasks.
bash get_model_checkpoint.sh
cd KoSBERT/
python SemanticSearch.py

Available Models

  1. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks [SBERT]-[EMNLP 2019]
  2. SimCSE: Simple Contrastive Learning of Sentence Embeddings [SimCSE]-[EMNLP 2021]

KoSentenceBERT

  • ๐Ÿค— Model Training
  • Dataset
    • Train: snli_1.0_train.ko.tsv (First phase, training NLI), sts-train.tsv (Second phase, continued training STS)
    • Valid: sts-dev.tsv
    • Test: sts-test.tsv

KoSimCSE

  • ๐Ÿค— Model Training
  • Dataset
    • Train: snli_1.0_train.ko.tsv + multinli.train.ko.tsv
    • Valid: sts-dev.tsv
    • Test: sts-test.tsv

Performance

  • Semantic Textual Similarity test set results
Model Cosine Pearson Cosine Spearman Euclidean Pearson Euclidean Spearman Manhattan Pearson Manhattan Spearman Dot Pearson Dot Spearman
KoSBERTโ€ SKT 78.81 78.47 77.68 77.78 77.71 77.83 75.75 75.22
KoSBERTbase 82.13 82.25 80.67 80.75 80.69 80.78 77.96 77.90
KoSRoBERTabase 80.70 81.03 80.97 81.06 80.84 80.97 79.20 78.93
KoSimCSE-BERTโ€ SKT 82.12 82.56 81.84 81.63 81.99 81.74 79.55 79.19
KoSimCSE-BERTbase 82.73 83.51 82.32 82.78 82.43 82.88 77.86 76.70
KoSimCSE-RoBERTabase 83.64 84.05 83.32 83.84 83.33 83.79 80.92 79.84

Downstream Tasks

  • KoSBERT: Semantic Search, Clustering
python SemanticSearch.py
python Clustering.py
  • KoSimCSE: Semantic Search
python SemanticSearch.py

Semantic Search (KoSBERT)

from sentence_transformers import SentenceTransformer, util
import numpy as np

model_path = '../Checkpoint/KoSBERT/kosbert-klue-bert-base'

embedder = SentenceTransformer(model_path)

# Corpus with example sentences
corpus = ['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.',
          '๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.',
          'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.',
          '์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.']

corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)

# Query sentences:
queries = ['ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.',
           '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.',
           '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity
top_k = 5
for query in queries:
    query_embedding = embedder.encode(query, convert_to_tensor=True)
    cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
    cos_scores = cos_scores.cpu()

    #We use np.argpartition, to only partially sort the top_k results
    top_results = np.argpartition(-cos_scores, range(top_k))[0:top_k]

    print("\n\n======================\n\n")
    print("Query:", query)
    print("\nTop 5 most similar sentences in corpus:")

    for idx in top_results[0:top_k]:
        print(corpus[idx].strip(), "(Score: %.4f)" % (cos_scores[idx]))
  • Results are as follows :

Query: ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.

Top 5 most similar sentences in corpus:
ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค. (Score: 0.6141)
ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค. (Score: 0.5952)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.1231)
ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค. (Score: 0.0752)
๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค. (Score: 0.0486)


======================


Query: ๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.

Top 5 most similar sentences in corpus:
์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.6656)
์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. (Score: 0.2988)
ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.1566)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.1112)
ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค. (Score: 0.0262)


======================


Query: ์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.

Top 5 most similar sentences in corpus:
์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค. (Score: 0.7570)
๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค. (Score: 0.3658)
์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค. (Score: 0.3583)
ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค. (Score: 0.0505)
๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค. (Score: -0.0087)

Clustering (KoSBERT)

from sentence_transformers import SentenceTransformer, util
import numpy as np

model_path = '../Checkpoint/KoSBERT/kosbert-klue-bert-base'

embedder = SentenceTransformer(model_path)

# Corpus with example sentences
corpus = ['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.',
          '๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.',
          'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.',
          '์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.',
          '์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.',
          'ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.',
          '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.',
          '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

corpus_embeddings = embedder.encode(corpus)

# Then, we perform k-means clustering using sklearn:
from sklearn.cluster import KMeans

num_clusters = 5
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_

clustered_sentences = [[] for i in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
    clustered_sentences[cluster_id].append(corpus[sentence_id])

for i, cluster in enumerate(clustered_sentences):
    print("Cluster ", i+1)
    print(cluster)
    print("")
  • Results are as follows:
Cluster  1
['ํ•œ ๋‚จ์ž๊ฐ€ ์Œ์‹์„ ๋จน๋Š”๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ๋นต ํ•œ ์กฐ๊ฐ์„ ๋จน๋Š”๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ํŒŒ์Šคํƒ€๋ฅผ ๋จน๋Š”๋‹ค.']

Cluster  2
['์›์ˆญ์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•œ๋‹ค.', '๊ณ ๋ฆด๋ผ ์˜์ƒ์„ ์ž…์€ ๋ˆ„๊ตฐ๊ฐ€๊ฐ€ ๋“œ๋Ÿผ์„ ์—ฐ์ฃผํ•˜๊ณ  ์žˆ๋‹ค.']

Cluster  3
['ํ•œ ๋‚จ์ž๊ฐ€ ๋ง์„ ํƒ„๋‹ค.', '๋‘ ๋‚จ์ž๊ฐ€ ์ˆ˜๋ ˆ๋ฅผ ์ˆฒ ์†ฆ์œผ๋กœ ๋ฐ€์—ˆ๋‹ค.', 'ํ•œ ๋‚จ์ž๊ฐ€ ๋‹ด์œผ๋กœ ์‹ธ์ธ ๋•…์—์„œ ๋ฐฑ๋งˆ๋ฅผ ํƒ€๊ณ  ์žˆ๋‹ค.']

Cluster  4
['์น˜ํƒ€ ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ๋จน์ด ๋’ค์—์„œ ๋‹ฌ๋ฆฌ๊ณ  ์žˆ๋‹ค.', '์น˜ํƒ€๊ฐ€ ๋“คํŒ์„ ๊ฐ€๋กœ ์งˆ๋Ÿฌ ๋จน์ด๋ฅผ ์ซ“๋Š”๋‹ค.']

Cluster  5
['๊ทธ ์—ฌ์ž๊ฐ€ ์•„์ด๋ฅผ ๋Œ๋ณธ๋‹ค.', 'ํ•œ ์—ฌ์ž๊ฐ€ ๋ฐ”์ด์˜ฌ๋ฆฐ์„ ์—ฐ์ฃผํ•œ๋‹ค.']

References

@misc{park2021klue,
    title={KLUE: Korean Language Understanding Evaluation},
    author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho},
    year={2021},
    eprint={2105.09680},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
@inproceedings{gao2021simcse,
   title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
   author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
   booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
   year={2021}
}
@article{ham2020kornli,
  title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
  author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
  journal={arXiv preprint arXiv:2004.03289},
  year={2020}
}
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
Owner
Self-softmax
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|็ฎ€ไฝ“ไธญๆ–‡ ERNIEๆ˜ฏ็™พๅบฆๅผ€ๅˆ›ๆ€งๆๅ‡บ็š„ๅŸบไบŽ็Ÿฅ่ฏ†ๅขžๅผบ็š„ๆŒ็ปญๅญฆไน ่ฏญไน‰็†่งฃๆก†ๆžถ๏ผŒ่ฏฅๆก†ๆžถๅฐ†ๅคงๆ•ฐๆฎ้ข„่ฎญ็ปƒไธŽๅคšๆบไธฐๅฏŒ็Ÿฅ่ฏ†็›ธ็ป“ๅˆ๏ผŒ้€š่ฟ‡ๆŒ็ปญๅญฆไน ๆŠ€ๆœฏ๏ผŒไธๆ–ญๅธๆ”ถๆตท้‡ๆ–‡ๆœฌๆ•ฐๆฎไธญ่ฏๆฑ‡ใ€็ป“ๆž„ใ€่ฏญไน‰็ญ‰ๆ–น้ข็š„็Ÿฅ่ฏ†๏ผŒๅฎž็Žฐๆจกๅž‹ๆ•ˆๆžœไธๆ–ญ่ฟ›ๅŒ–ใ€‚ERNIEๅœจ็ดฏ็งฏ 40 ไฝ™ไธชๅ…ธๅž‹ NLP ไปปๅŠกๅ–ๅพ— SOTA ๆ•ˆๆžœ๏ผŒๅนถๅœจ G

5.4k Jan 03, 2023
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (เค‹เคทเคฟเค•เฅ‡เคถ) 126 Jan 02, 2023
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022