L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

Overview

L3Cube-MahaCorpus

L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual corpus with 24.8M sentences and 289M tokens. We also present, MahaBERT, MahaAlBERT, and MahaRoBerta all BERT-based masked language models, and MahaFT, the fast text word embeddings both trained on full Marathi corpus with 752M tokens. The evaluation details are mentioned in our paper link

Dataset Statistics

L3Cube-MahaCorpus(full) = L3Cube-MahaCorpus(news) + L3Cube-MahaCorpus(non-news)

Full Marathi Corpus incorporates all existing sources .

Dataset #tokens(M) #sentences(M) Link
L3Cube-MahaCorpus(news) 212 17.6 link
L3Cube-MahaCorpus(non-news) 76.4 7.2 link
L3Cube-MahaCorpus(full) 289 24.8 link
Full Marathi Corpus(all sources) 752 57.2 link

Marathi BERT models and Marathi Fast Text model

The full Marathi Corpus is used to train BERT language models and made available on HuggingFace model hub.

Model Description Link
MahaBERT Base-BERT link
MahaRoBERTa RoBERTa link
MahaAlBERT AlBERT link
MahaFT Fast Text bin vec

L3CubeMahaSent

L3CubeMahaSent is the largest publicly available Marathi Sentiment Analysis dataset to date. This dataset is made of marathi tweets which are manually labelled. The annotation guidelines are mentioned in our paper link .

Dataset Statistics

This dataset contains a total of 18,378 tweets which are classified into three classes - Positive(1), Negative(-1) and Neutral(0). All tweets are present in their original form, without any preprocessing.

Out of these, 15,864 tweets are considered for splitting them into train(tweets-train.csv), test(tweets-test.csv) and validation(tweets-valid.csv) datasets. This has been done to avoid class imbalance in our dataset.
The remaining 2,514 tweets are also provided in a separate sheet(tweets-extra.csv).

The statistics of the dataset are as follows :

Split Total tweets Tweets per class
Train 12114 4038
Test 2250 750
Validation 1500 500

The extra sheet contains 2355 positive and 159 negative tweets. These tweets have not been considered during baseline experiments.

Baseline Experimentations

Two-class(positive,negative) and Three-class(positive,negative,neutral) sentiment analysis / classification was performed on the dataset.

Models

Some of the models used or performing baseline experiments were:

  • CNN, BiLSTM

    • fastText embeddings provided by IndicNLP and Facebook are also used along with the above two models. These embeddings are used in two variations: static and trainable.
  • BERT based models:

    • Multilingual BERT
    • IndicBERT

Results

Details of the best performing models are given in the following table:

Model 3-class 2-class
CNN IndicFT trainable 83.24 93.13
BiLSTM IndicFT trainable 82.89 91.80
IndicBERT 84.13 92.93

The fine-tuned IndicBERT model is available on huggingface here . Further details about the dataset and baseline experiments can be found in this paper pdf .

License

L3Cube-MahaCorpus and L3CubeMahaSent is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citing

@article{joshi2022l3cube,
  title={L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources},
  author={Joshi, Raviraj},
  journal={arXiv preprint arXiv:2202.01159},
  year={2022}
}
@inproceedings{kulkarni2021l3cubemahasent,
  title={L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Joshi, Raviraj},
  booktitle={Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis},
  pages={213--220},
  year={2021}
}
@inproceedings{kulkarni2022experimental,
  title={Experimental evaluation of deep learning models for marathi text classification},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Jagdale, Jayashree and Joshi, Raviraj},
  booktitle={Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications},
  pages={605--613},
  year={2022},
  organization={Springer}
}
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021