L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

Overview

L3Cube-MahaCorpus

L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual corpus with 24.8M sentences and 289M tokens. We also present, MahaBERT, MahaAlBERT, and MahaRoBerta all BERT-based masked language models, and MahaFT, the fast text word embeddings both trained on full Marathi corpus with 752M tokens. The evaluation details are mentioned in our paper link

Dataset Statistics

L3Cube-MahaCorpus(full) = L3Cube-MahaCorpus(news) + L3Cube-MahaCorpus(non-news)

Full Marathi Corpus incorporates all existing sources .

Dataset #tokens(M) #sentences(M) Link
L3Cube-MahaCorpus(news) 212 17.6 link
L3Cube-MahaCorpus(non-news) 76.4 7.2 link
L3Cube-MahaCorpus(full) 289 24.8 link
Full Marathi Corpus(all sources) 752 57.2 link

Marathi BERT models and Marathi Fast Text model

The full Marathi Corpus is used to train BERT language models and made available on HuggingFace model hub.

Model Description Link
MahaBERT Base-BERT link
MahaRoBERTa RoBERTa link
MahaAlBERT AlBERT link
MahaFT Fast Text bin vec

L3CubeMahaSent

L3CubeMahaSent is the largest publicly available Marathi Sentiment Analysis dataset to date. This dataset is made of marathi tweets which are manually labelled. The annotation guidelines are mentioned in our paper link .

Dataset Statistics

This dataset contains a total of 18,378 tweets which are classified into three classes - Positive(1), Negative(-1) and Neutral(0). All tweets are present in their original form, without any preprocessing.

Out of these, 15,864 tweets are considered for splitting them into train(tweets-train.csv), test(tweets-test.csv) and validation(tweets-valid.csv) datasets. This has been done to avoid class imbalance in our dataset.
The remaining 2,514 tweets are also provided in a separate sheet(tweets-extra.csv).

The statistics of the dataset are as follows :

Split Total tweets Tweets per class
Train 12114 4038
Test 2250 750
Validation 1500 500

The extra sheet contains 2355 positive and 159 negative tweets. These tweets have not been considered during baseline experiments.

Baseline Experimentations

Two-class(positive,negative) and Three-class(positive,negative,neutral) sentiment analysis / classification was performed on the dataset.

Models

Some of the models used or performing baseline experiments were:

  • CNN, BiLSTM

    • fastText embeddings provided by IndicNLP and Facebook are also used along with the above two models. These embeddings are used in two variations: static and trainable.
  • BERT based models:

    • Multilingual BERT
    • IndicBERT

Results

Details of the best performing models are given in the following table:

Model 3-class 2-class
CNN IndicFT trainable 83.24 93.13
BiLSTM IndicFT trainable 82.89 91.80
IndicBERT 84.13 92.93

The fine-tuned IndicBERT model is available on huggingface here . Further details about the dataset and baseline experiments can be found in this paper pdf .

License

L3Cube-MahaCorpus and L3CubeMahaSent is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citing

@article{joshi2022l3cube,
  title={L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources},
  author={Joshi, Raviraj},
  journal={arXiv preprint arXiv:2202.01159},
  year={2022}
}
@inproceedings{kulkarni2021l3cubemahasent,
  title={L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Joshi, Raviraj},
  booktitle={Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis},
  pages={213--220},
  year={2021}
}
@inproceedings{kulkarni2022experimental,
  title={Experimental evaluation of deep learning models for marathi text classification},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Jagdale, Jayashree and Joshi, Raviraj},
  booktitle={Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications},
  pages={605--613},
  year={2022},
  organization={Springer}
}
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022