OpenChat: Opensource chatting framework for generative models

Overview

OpenChat: Opensource chatting framework for generative models

    ____   ____   ______ _   __   ______ __  __ ___   ______
   / __ \ / __ \ / ____// | / /  / ____// / / //   | /_  __/
  / / / // /_/ // __/  /  |/ /  / /    / /_/ // /| |  / /   
 / /_/ // ____// /___ / /|  /  / /___ / __  // ___ | / /    
 \____//_/    /_____//_/ |_/   \____//_/ /_//_/  |_|/_/     
  • OpenChat is opensource chatting framework for generative models.
  • You can talk with AI with only one line of code.



Installation

pip install openchat



Model Supports

  • DialoGPT : [small, medium, large]
  • BlenderBot : [small, medium, large, xlarge]
  • Coming Soon...



Usage

1. Terminal environment

  • Chatting on terminal.
  • Type .exit if you want to exit dialogue.
  • Type .clear if you want to clear all histories.
  • You can add additional user keywords. (Details are described below.)
>>> from openchat import OpenChat
>>> OpenChat(model="blenderbot", size="large")
Chat with facebook/blenderbot-1B-distill !
user : Hi. It is nice day.
bot : It is a nice day out. I am going to go for a walk. What are you up to?
user : I'll play computer game. Do you like playing game?
bot : I love playing video games. What kind of games do you like to play on your computer?
user : I love racing game. It is so exited. How about you?
bot : I love racing games as well. I like to play on the Playstation 4. What about you?
user : Usually I like to play on PC. I have a question. Who is CEO of Apple?
bot : The CEO of Apple is Steve Jobs. He founded the company in 1976.
user : That's right. I have an IPhone. It is my favorite phone. What is your phone?
bot : I have a Samsung Galaxy S8. I love it. It's the best phone I've ever had.
user : .exit
bot : good bye.

  • If you want to use GPU, use argument device="cuda"
>>> from openchat import OpenChat
>>> OpenChat(model="blenderbot", size="large", device="cuda")

2. Your own environment (not terminal)

  • You can use user id to manage user-specific history.
  • This can be useful when deployed on Facebook messenger or WhatsApp.
  • There is a web demo implementation in the /demo folder.


2.1. Write your own environment class

  • Make your own environment class inherited from BaseEnv
  • And implement your own run(model: BaseModel) method like below.
from typing import Dict
from flask import Flask, render_template
from flask_cors import CORS
from openchat.envs import BaseEnv
from openchat.models import BaseModel


class WebDemoEnv(BaseEnv):

    def __init__(self):
        super().__init__()
        self.app = Flask(__name__)
        CORS(self.app)

    def run(self, model: BaseModel):

        @self.app.route("/")
        def index():
            return render_template("index.html", title=model.name)

        @self.app.route('/send//', methods=['GET'])
        def send(user_id, text: str) -> Dict[str, str]:

            if text in self.keywords:
                # Format of self.keywords dictionary
                # self.keywords['/exit'] = (exit_function, 'good bye.')

                _out = self.keywords[text][1]
                # text to print when keyword triggered

                self.keywords[text][0](user_id, text)
                # function to operate when keyword triggered

            else:
                _out = model.predict(user_id, text)

            return {"output": _out}

        self.app.run(host="0.0.0.0", port=8080)

2.2. Start to run application.

from openchat import OpenChat
from demo.web_demo_env import WebDemoEnv

OpenChat(model="blenderbot", size="large", env=WebDemoEnv())



3. Additional Options

3.1. Add custom Keywords

  • You can add new manual keyword such as .exit, .clear,
  • call the self.add_keyword('.new_keyword', 'message to print', triggered_function)' method.
  • triggered_function should be form of function(user_id:str, text:str)
from openchat.envs import BaseEnv


class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        self.add_keyword(".new_keyword", "message to print", self.function)

    def function(self, user_id: str, text: str):
        """do something !"""
        



3.2. Modify generation options

  • You can modify max_context_length (number of input history tokens, default is 128).
>>> OpenChat(size="large", device="cuda", max_context_length=256)

  • You can modify generation options ['num_beams', 'top_k', 'top_p'].
>>> model.predict(
...     user_id="USER_ID",
...     text="Hello.",
...     num_beams=5,
...     top_k=20,
...     top_p=0.8,
... )



3.3. Check histories

  • You can check all dialogue history using self.histories
from openchat.envs import BaseEnv


class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        print(self.histories)
{
    user_1 : {'user': [] , 'bot': []},
    user_2 : {'user': [] , 'bot': []},
    ...more...
    user_n : {'user': [] , 'bot': []},
}

3.4. Clear histories

  • You can clear all dialogue histories
from flask import Flask
from openchat.envs import BaseEnv
from openchat.models import BaseModel

class YourOwnEnv(BaseEnv):
    
    def __init__(self):
        super().__init__()
        self.app = Flask(__name__)

    def run(self, model: BaseModel):
        
        @self.app.route('/send//', methods=['GET'])
        def send(user_id, text: str) -> Dict[str, str]:
            
            self.clear(user_id, text)
            # clear all histories ! 



License

Copyright 2021 Hyunwoong Ko.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Hyunwoong Ko
Co-Founder and Research Engineer at @tunib-ai. previously @kakaobrain.
Hyunwoong Ko
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Unofficial Parallel WaveGAN (+ MelGAN & Multi-band MelGAN & HiFi-GAN & StyleMelGAN) with Pytorch

Parallel WaveGAN implementation with Pytorch This repository provides UNOFFICIAL pytorch implementations of the following models: Parallel WaveGAN Mel

Tomoki Hayashi 1.2k Dec 23, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022