🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

Overview

PySBD logo

pySBD: Python Sentence Boundary Disambiguation (SBD)

Python package codecov License PyPi GitHub

pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detection module that works out-of-the-box.

This project is a direct port of ruby gem - Pragmatic Segmenter which provides rule-based sentence boundary detection.

pysbd_code

Highlights

'PySBD: Pragmatic Sentence Boundary Disambiguation' a short research paper got accepted into 2nd Workshop for Natural Language Processing Open Source Software (NLP-OSS) at EMNLP 2020.

Research Paper:

https://arxiv.org/abs/2010.09657

Recorded Talk:

pysbd_talk

Poster:

name

Install

Python

pip install pysbd

Usage

  • Currently pySBD supports 22 languages.
import pysbd
text = "My name is Jonas E. Smith. Please turn to p. 55."
seg = pysbd.Segmenter(language="en", clean=False)
print(seg.segment(text))
# ['My name is Jonas E. Smith.', 'Please turn to p. 55.']
import spacy
from pysbd.utils import PySBDFactory

nlp = spacy.blank('en')

# explicitly adding component to pipeline
# (recommended - makes it more readable to tell what's going on)
nlp.add_pipe(PySBDFactory(nlp))

# or you can use it implicitly with keyword
# pysbd = nlp.create_pipe('pysbd')
# nlp.add_pipe(pysbd)

doc = nlp('My name is Jonas E. Smith. Please turn to p. 55.')
print(list(doc.sents))
# [My name is Jonas E. Smith., Please turn to p. 55.]

Contributing

If you want to contribute new feature/language support or found a text that is incorrectly segmented using pySBD, then please head to CONTRIBUTING.md to know more and follow these steps.

  1. Fork it ( https://github.com/nipunsadvilkar/pySBD/fork )
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create a new Pull Request

Citation

If you use pysbd package in your projects or research, please cite PySBD: Pragmatic Sentence Boundary Disambiguation.

@inproceedings{sadvilkar-neumann-2020-pysbd,
    title = "{P}y{SBD}: Pragmatic Sentence Boundary Disambiguation",
    author = "Sadvilkar, Nipun  and
      Neumann, Mark",
    booktitle = "Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.nlposs-1.15",
    pages = "110--114",
    abstract = "We present a rule-based sentence boundary disambiguation Python package that works out-of-the-box for 22 languages. We aim to provide a realistic segmenter which can provide logical sentences even when the format and domain of the input text is unknown. In our work, we adapt the Golden Rules Set (a language specific set of sentence boundary exemplars) originally implemented as a ruby gem pragmatic segmenter which we ported to Python with additional improvements and functionality. PySBD passes 97.92{\%} of the Golden Rule Set examplars for English, an improvement of 25{\%} over the next best open source Python tool.",
}

Credit

This project wouldn't be possible without the great work done by Pragmatic Segmenter team.

Comments
  • Question marks at the end swallowed

    Question marks at the end swallowed

    Looks like the example with just question marks is good now:

    >>> segmenter.segment("??")
    ['??']
    

    but the example with double question marks as a token at the end of a sentence still loses the question marks:

    >>> segmenter.segment("T stands for the vector transposition. As shown in Fig. ??")
    ['T stands for the vector transposition.', 'As shown in Fig.']
    

    looks like this is the minimal repro:

    >>> segmenter.segment("Fig. ??")
    ['Fig.']
    
    bug edge-cases 
    opened by dakinggg 11
  • Pysbd just hangs🐛

    Pysbd just hangs🐛

    Describe the bug The process hangs .

    To Reproduce Steps to reproduce the behavior: Input text - <f.302205302116302416302500302513915bd> flat = "f.302205302116302416302500302513915bd" print(flat) x=segClean = pysbd.Segmenter(language="en", clean=True, char_span=False) for z in x.segment(flat): print(z)

    Example: Input text - "My name is Jonas E. Smith. Please turn to p. 55."

    Expected behavior Return f.302205302116302416302500302513915

    Example: ['f.302205302116302416302500302513915bd']

    Additional context Add any other context about the problem here.

    help wanted 
    opened by kariato 8
  • Incorrect text span start and end returned

    Incorrect text span start and end returned

    Looks like something weird happening in this case, note that the indices of the second text span are incorrect:

    >>> seg = pysbd.Segmenter(language='en', clean=False, char_span=True)
    >>> seg.segment("1) The first item. 2) The second item.")                                                                                
    [TextSpan(sent='1) The first item.', start=0, end=18), TextSpan(sent='2) The second item.', start=0, end=19)] 
    
    bug 
    opened by dakinggg 7
  • Performance improvement?

    Performance improvement?

    I am not certain of this, but I suspect there might be room for performance improvement by using re.compile to precompile all of the needed regexs. Otherwise they will have to be compiled regularly (once the re cache of 100 has been exceeded)

    question 
    opened by dakinggg 7
  • Slovak lang support

    Slovak lang support

    We've added support for SBD in Slovak language text.

    Language specific improvements:

    • list of common slovak abbreviations
    • list of prepositive abbreviations
    • list of number abbreviations
    • handling of roman numerals
    • handling of „ text “ quotes, that are common in Slovak language
    • handling of ordinal numerals in dates, such as 17. Apríl 2020
    • modified the replacement of periods in abbreviations, so it can consistently handle common Slovak abbreviations such as Company Name s. r. o.
    • disabled processing of alphabetical lists, because of conflicts with some common abbreviations

    The code has been tested for stability on a very large corpus of web text. The has been no rigorous testing for segmentation quality, but the subjective feeling in the team is very positive.

    language 
    opened by misotrnka 6
  • Different segmentation with Spacy and when using pySBD directly

    Different segmentation with Spacy and when using pySBD directly

    Firstly thank you for this project - I was lucky to find it and it is really useful

    I seem to have found a case where the segmentation is behaving differently when run within the Spacy pipeline and when run using pySBD directly. I stumbled on it with my own text where a sentence after a previous sentence that was in quotes was being lumped together. I looked through the Golden Rules and found this wasn't expected and then noticed that even with the text in one of your tests it acts differently in Spacy.

    To reproduce run these two bits of code:

    from pysbd.utils import PySBDFactory
    nlp = spacy.blank('en')
    nlp.add_pipe(PySBDFactory(nlp))
    doc = nlp("She turned to him, \"This is great.\" She held the book out to show him.")
    for sent in doc.sents:
        print(str(sent).strip() + '\n')
    

    She turned to him, "This is great." She held the book out to show him.

    import pysbd
    text = "She turned to him, \"This is great.\" She held the book out to show him."
    seg = pysbd.Segmenter(language="en", clean=False)
    #print(seg.segment(text))
    for sent in seg.segment(text):
        print(str(sent).strip() + '\n')
    

    She turned to him, "This is great."

    She held the book out to show him.

    The second way is the desired output (based on the rules at least)

    bug help wanted 
    opened by nmstoker 6
  • destructive behaviour in edge-cases

    destructive behaviour in edge-cases

    As of v0.3.3, pySBD shows destructive behavior in some edge-cases even when setting the option clean to False. When dealing with OCR text, pySBD removes whitespace after multiple periods.

    To reproduce

    import pysbd
    
    splitter = pysbd.Segmenter(language="fr", clean=False)
    
    text = "Maissen se chargea du reste .. Logiquement,"
    print(splitter.segment(text))
    
    text = "Maissen se chargea du reste ... Logiquement,"
    print(splitter.segment(text))
    
    text = "Maissen se chargea du reste .... Logiquement,"
    print(splitter.segment(text))
    

    Actual output Please note the missing whitespace after the final period in the example with .. and .....

    ['Maissen se chargea du reste .', '.', 'Logiquement,']
    ['Maissen se chargea du reste ... ', 'Logiquement,']
    ['Maissen se chargea du reste .', '...', 'Logiquement,']
    

    Expected output

    ['Maissen se chargea du reste .', '. ', 'Logiquement,']
    ['Maissen se chargea du reste ... ', 'Logiquement,']
    ['Maissen se chargea du reste .', '... ', 'Logiquement,']
    

    In general, pySBD works well. Many thanks @nipunsadvilkar. I can also look into this as soon as I find some time and open a pull request.

    bug edge-cases 
    opened by aflueckiger 5
  • 🏎 ⚡️ 💯 [Rough] Benchmark across Segmentation Tools, Libraries and Algorithms

    🏎 ⚡️ 💯 [Rough] Benchmark across Segmentation Tools, Libraries and Algorithms

    Segmentation Tools, Libraries and Algorithms:

    • [x] Stanza
    • [x] syntok
    • [x] NLTK
    • [x] spaCy
    • [x] blingfire

    | Tool | Accuracy | Speed (ms) | |-----------|----------|------------| | blingfire | 75.00% | 49.91 | | pySBD | 97.92% | 2449.18 | | syntok | 68.75% | 783.73 | | spaCy | 52.08% | 473.96 | | stanza | 72.92% | 120803.37 | | NLTK | 56.25% | 342.98 |

    opened by nipunsadvilkar 5
  • ✨ 💫  Support Multiple languages

    ✨ 💫 Support Multiple languages

    Languages to be supported:

    • [x] English
    • [x] Bulgarian
    • [x] Spanish
    • [x] Russian
    • [x] Arabic
    • [x] Amharic
    • [x] Marathi
    • [x] Hindi
    • [x] Armenian
    • [x] Persian
    • [x] Urdu
    • [x] Polish
    • [x] Chinese
    • [x] Dutch
    • [x] Danish
    • [x] French
    • [x] Italian
    • [x] Greek
    • [x] Burmese
    • [x] Japanese
    • [x] Deutsch
    • [x] Kazakh
    enhancement 
    opened by nipunsadvilkar 4
  • Regexp issues

    Regexp issues

    I'm getting errors because the regexp engine interprets parentesis: "unterminated subpattern" and "unbalanced parenthesis".

    I'm analysing very large amounts of text, so not sure how these were triggered.

    opened by mollerhoj 4
  • Reduce some calls to re.sub

    Reduce some calls to re.sub

    So calls to re.compile are not a problem. The main thing slowing it down is lots of calls to re.sub in abbreviation_replacer.py. I reduced some of these calls which speeds it up by a factor of ~3-3.5x on my machine, for the specific (longish) document that I tested with. I also included the script I used to test timing. Given that you are much more familiar with the codebase, see if my changes look reasonable, but all the tests do still pass. There are probably some more ways to speed up the calls in that file.

    enhancement 
    opened by dakinggg 4
  • How is accuracy on OPUS-100 computed?

    How is accuracy on OPUS-100 computed?

    Hi! Thanks for this library.

    Since there is no notion of documents in the OPUS-100 dataset it is not clear to me how accuracy is computed. I tried a naive approach using pairwise joining of sentences:

    from datasets import load_dataset
    import pysbd
    
    if __name__ == "__main__":
        sentences = [
            sample["de"].strip()
            for sample in load_dataset("opus100", "de-en", split="test")["translation"]
        ]
    
        correct = 0
        total = 0
    
        segmenter = pysbd.Segmenter(language="de")
    
        for sent1, sent2 in zip(sentences, sentences[1:]):
            out = tuple(
                s.strip() for s in segmenter.segment(sent1 + " " + sent2)
            )
    
            total += 1
    
            if out == (sent1, sent2):
                correct += 1
    
        print(f"{correct}/{total} = {correct / total}")
    

    But I get 1011/1999 = 50.6% Accuracy which is not close to the 80.95% Accuracy reported in the paper.

    Thanks for any help!

    opened by bminixhofer 1
  • Added decorator as required by latest SpaCy

    Added decorator as required by latest SpaCy

    Hello!

    In using pySBD, I've noticed that the current example script no longer works with the latest version of SpaCy (3.3.0). This is the traceback I get:

    Traceback (most recent call last):
      File "/Users/lucas/Code/significant-statements-extraction/scripts/test_pysbd.py", line 27, in <module>
        nlp.add_pipe(pysbd_sentence_boundaries)
      File "/Users/lucas/miniforge3/envs/pytorch_p39/lib/python3.9/site-packages/spacy/language.py", line 773, in add_pipe
        raise ValueError(err)
    ValueError: [E966] `nlp.add_pipe` now takes the string name of the registered component factory, not a callable component. Expected string, but got <function pysbd_sentence_boundaries at 0x11ffa9160> (name: 'None').
    
    - If you created your component with `nlp.create_pipe('name')`: remove nlp.create_pipe and call `nlp.add_pipe('name')` instead.
    
    - If you passed in a component like `TextCategorizer()`: call `nlp.add_pipe` with the string name instead, e.g. `nlp.add_pipe('textcat')`.
    
    - If you're using a custom component: Add the decorator `@Language.component` (for function components) or `@Language.factory` (for class components / factories) to your custom component and assign it a name, e.g. `@Language.component('your_name')`. You can then run `nlp.add_pipe('your_name')` to add it to the pipeline.
    

    This pull requests add a @Language.component decorator to make pySBD available in SpaCy again.

    opened by soldni 0
  • Arabic sentence split on the Arabic comma

    Arabic sentence split on the Arabic comma

    Describe the bug Arabic sentence split on the Arabic comma.

    To Reproduce Steps to reproduce the behavior:

    import pysbd
    text = "هذه تجربة، للغة العربية"
    seg = pysbd.Segmenter(language="ar", clean=True)
    >>> print(seg.segment(text))
    

    Output: ['هذه تجربة،', 'للغة العربية']

    Expected behavior The text should not be split on the Arabic comma. Expected output: ['هذه تجربة، للغة العربية']

    Additional context I locally fixed it by modifying the file: pysbd/lang/arabic.py, deleting ، from SENTENCE_BOUNDARY_REGEX.

    opened by ymoslem 0
  • Does pysbd delete sentences after detection ?

    Does pysbd delete sentences after detection ?

    Hey there, So ive been using pysbd to detect boundries in hindi and marathi language and then save the same data rearranged from a paragraph to one sentence boundry per sample. Unfortunately the storage size has gone down from 22GB to 14.5 GB after just detecting boundries and just saving them per sentence. and yes i did turn off the clean args.

    opened by StephennFernandes 0
  • Update pysbd_as_spacy_component.py

    Update pysbd_as_spacy_component.py

    Thanks for a great sentence splitting package. A small contribution, after troubleshooting, why the code was not working out of the box. The spacy v3 requires a string in the add_pipe() call. The component need to be declared using the language decorator. See also https://spacy.io/usage/processing-pipelines#custom-components. Hope it helps other users.

    opened by guebeln0 0
Releases(v0.3.4)
  • v0.3.4(Feb 11, 2021)

  • v0.3.3(Oct 8, 2020)

  • v0.3.2(Sep 11, 2020)

  • v0.3.1(Aug 11, 2020)

  • v0.3.0(Aug 11, 2020)

    v0.3.0

    • ✨ 💫 Support Multiple languages - #2
    • 🏎⚡️💯 Benchmark across Segmentation Tools, Libraries and Algorithms
    • 🎨 ♻️ Update sentence char_span logic
    • ⚡️ Performance improvements - #41
    • ♻️🐛 Refactor AbbreviationReplacer
    Source code(tar.gz)
    Source code(zip)
  • v0.3.0rc(Jun 9, 2020)

    • ✨ 💫 sent char_span through with spaCy & regex approach - #63
    • ♻️ Refactoring to support multiple languages
    • ✨ 💫Initial language support for - Hindi, Marathi, Chinese, Spanish
    • ✅ Updated tests - more coverage & regression tests for issues
    • 👷👷🏻‍♀️ GitHub actions for CI-CD
    • 💚☂️ Add code coverage - coverage.py Add Codecov
    • 🐛 Fix incorrect text span & vanilla pysbd vs spacy output discrepancy - #49, #53, #55 , #59
    • 🐛 Fix NUMBERED_REFERENCE_REGEX for zero or one time - #58
    • 🔐Fix security vulnerability bleach - #62
    Source code(tar.gz)
    Source code(zip)
  • v0.2.3(Nov 13, 2019)

  • v0.2.2(Nov 1, 2019)

  • v0.2.1(Oct 30, 2019)

  • v0.2.0(Oct 25, 2019)

    • ✨Add char_span parameter (optional) to get sentence & its (start, end) char offsets from original text
    • ✨pySBD as a spaCy component example
    • 🐛 Fix double question mark swallow bug - #39
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Oct 24, 2019)

  • v0.1.4(Oct 20, 2019)

    • ✨ ✅ Handle intermittent punctuations added special case: r"[。..!!?].*" to handle intermittent dots, exclaimation, etc. special cases group can be updated as per developer needs- #34
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Oct 19, 2019)

    • 🐛 Fix lists_item_replacer - #29
    • 🐛 Fix & ♻️ refactor replace_multi_period_abbreviations - #30
    • 🐛 Fix abbreviation_replacer - #31
    • ✅ Add regression tests for issues
    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Oct 18, 2019)

  • v0.1.1(Oct 9, 2019)

Owner
Nipun Sadvilkar
I like to explore Jungle of Data with Python as my swiss knife with pandas, numpy, matplotlib and scikit-learn as its multi-tools😅
Nipun Sadvilkar
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022