A semismooth Newton method for elliptic PDE-constrained optimization

Overview

sNewton4PDEOpt

The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear elliptic PDE-constrained optimization problem

where solves the linear elliptic PDE:

The feasible set is

The control space is discretized using piecewise constant functions and the state space is discretized using piecewise continuous functions. FEniCS is used to preform the discretization. Sparse linear systems are solved using npsolve of scipy.

The parameter alpha must be positive and beta be nonnegative. The domain D is (0,1)^d with d being one or two. The diffusion coefficient kappa maps from the domain to the positive reals. The lower and upper bounds lb and ub, the desired state yd, the diffusion coefficient kappa, and the source term g must be instances of either Constant, Function, or Expression.

The semismooth Newton method is applied a normal map, a reformulation of the first-order optimality conditions as a nonsmooth operator equation (see eq. (3.3) in Ref. [3]).

The module implements a globalization via a restricted residual monotonicity test (see MonotonicityTest), while NewtonStep chooses the step size equal to one. The implementation of the restricted residual monotoncitity test is based on eq. (3.32) in Ref. [1].

Installation

The code can be downloaded using git clone.

Examples

  • example1, example2, example3, and example4 implement Examples 1--4 in Ref. [4].
  • poisson1d and possion2d use an L1-heuristic to determine beta (compare with p. 199 in Ref. [2] and Lemma 3.1 in Ref. [4]).
  • example73 implements Example 7.3 in Ref. [5] and it is used for code verification.
  • random_poisson2d demonstrates how to use the module to solve sample average approximations of a simple risk-neutral problem.
  • cdc provides an example where globalization using MonotonicityTest requires fewer iterations than NewtonStep.

Dependencies

Some tests use the following packages:

The code was tested using python version 3.8.11, scipy version 1.7.0, numpy version 1.21.1, fenics version 2019.1.0, moola version 0.1.6, and matplotlib version 3.4.2.

References

Author

The code has been implemented by Johannes Milz.

Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Semi-supervised Stance Detection of Tweets Via Distant Network Supervision

SANDS This is an annonymous repository containing code and data necessary to reproduce the results published in "Semi-supervised Stance Detection of T

2 Sep 22, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
a dnn ai project to classify which food people are eating on audio recordings

Deep Learning - EAT Challenge About This project is part of an AI challenge of the DeepLearning course 2021 at the University of Augsburg. The objecti

Marco Tröster 1 Oct 24, 2021
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022