[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Related tags

Deep LearningSETR
Overview

SEgmentation TRansformers -- SETR

image

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers,
Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, Li Zhang,
CVPR 2021

Installation

Our project is developed based on mmsegmentation. Please follow the official mmsegmentation INSTALL.md and getting_started.md for installation and dataset preparation.

Main results

Cityscapes

Method Crop Size Batch size iteration set mIoU
SETR-Naive 768x768 8 40k val 77.37 model config
SETR-Naive 768x768 8 80k val 77.90 model config
SETR-MLA 768x768 8 40k val 76.65 model config
SETR-MLA 768x768 8 80k val 77.24 model config
SETR-PUP 768x768 8 40k val 78.39 model config
SETR-PUP 768x768 8 80k val 79.34 model config
SETR-Naive-DeiT 768x768 8 40k val 77.85 model config
SETR-Naive-DeiT 768x768 8 80k val 78.66 model config
SETR-MLA-DeiT 768x768 8 40k val 78.04 model config
SETR-MLA-DeiT 768x768 8 80k val 78.98 model config
SETR-PUP-DeiT 768x768 8 40k val 78.79 model config
SETR-PUP-DeiT 768x768 8 80k val 79.45 model config

ADE20K

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip)
SETR-Naive 512x512 16 160k Val 48.06 48.80 model config
SETR-MLA 512x512 8 160k val 48.27 50.03 model config
SETR-MLA 512x512 16 160k val 48.64 50.28 model config
SETR-PUP 512x512 16 160k val 48.58 50.09 model config

Pascal Context

Method Crop Size Batch size iteration set mIoU mIoU(ms+flip)
SETR-Naive 480x480 16 80k val 52.89 53.61 model config
SETR-MLA 480x480 8 80k val 54.39 55.39 model config
SETR-MLA 480x480 16 80k val 54.87 55.83 model config
SETR-PUP 480x480 16 80k val 54.40 55.27 model config

Get Started

Train

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} 
# For example, train a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_train.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py 8

Single-scale testing

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Multi-scale testing

Use the config file ending in _MS.py in configs/SETR.

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}  [--eval ${EVAL_METRICS}]
# For example, test a SETR-PUP on Cityscapes dataset with 8 GPUs
./tools/dist_test.sh configs/SETR/SETR_PUP_768x768_40k_cityscapes_bs_8_MS.py \
work_dirs/SETR_PUP_768x768_40k_cityscapes_bs_8/iter_40000.pth \
8 --eval mIoU

Please see getting_started.md for the more basic usage of training and testing.

Reference

@inproceedings{SETR,
    title={Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers}, 
    author={Zheng, Sixiao and Lu, Jiachen and Zhao, Hengshuang and Zhu, Xiatian and Luo, Zekun and Wang, Yabiao and Fu, Yanwei and Feng, Jianfeng and Xiang, Tao and Torr, Philip H.S. and Zhang, Li},
    booktitle={CVPR},
    year={2021}
}

License

MIT

Acknowledgement

Thanks to previous open-sourced repo:
mmsegmentation
pytorch-image-models

Owner
Fudan Zhang Vision Group
Zhang Vision Group at the School of Data Science of the Fudan University, led by Professor Li Zhang
Fudan Zhang Vision Group
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022