U-Net for GBM

Overview

My Final Year Project(FYP) In National University of Singapore(NUS)

You need

Pytorch(stable 1.9.1) 

Both cuda version and cpu version are OK

File Structure

📦FYP-U-Net
 ┣ 📂data
 ┃ ┣ 📂imgs
 ┃ ┃ ┣ 📌···.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂masks
 ┃ ┃ ┣ 📌···_mask.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂PredictImage 
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂SaveImage
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┗ 📂Source
 ┃ ┃ ┣ 📂TCGA_CS_4941_19960909
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1_mask.tif 
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2_mask.tif 
 ┃ ┃ ┃ ┗ ···
 ┃ ┃ ┣ 📂TCGA_CS_4942_19970222
 ┃ ┃ ┗ ···
 ┣ 📂params
 ┃ ┗ 📜unet.pth
 ┣ 📓README,md
 ┣ 📄data.py
 ┣ 📄net.py
 ┣ 📄utils.py
 ┗ 📄train.py
  • 'data' dir contains the origin dataset in 'Source' dir. And the dataset can be download in Kaggle (https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/). And also you can use different dataset.
  • 'imgs' contains images and 'masks' contains corresponding masks to images. Corresponding masks have a _mask suffix. More inforamtion you can check in kaggle.
  • 'SaveImage' is meant for store train results and 'PredictImage' is meant for store test results.
  • 'params' is meant for store model.

Quick Up

Run train.py

Change DataSet

  • Delte all images in data dir and its subdir.

  • Install dataset from kaggle or anything you like(PS. Corresponding masks must have a _mask suffix) into 'Source' dir

  • Run data.py

    python3 data.py
    

    Remember change the path. After this, you will get images and masks in imgs dir and masks dir.

  • Run train.py

    python3 train.py
    

    Remember change the path. And you can see the results in 'SaveImage' dir and 'PredictImage' dir.

Results

Segment Image

Pre-trained model

https://drive.google.com/file/d/1yyrITv7BQf9kDnP__g6Qa3_wUPD1c_i_/view?usp=sharing

Owner
PinkR1ver
Artist, go with the flow, stay up late
PinkR1ver
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021