WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

Overview

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet).

  • [New] Note that all the emails about the download permission of WORD will be handled after the paper is accepted, all information will be updated in time in this repo, please don't send them multiple times!!!
  • This repo provides the codebase and dataset of work WORD: Revisiting Organs Segmentation in the Whole Abdominal Region, and the download requirement will be approved after the paper is accepted, stay tuned !!!
  • Now, we are preparing an online evaluation server for the fair and open research if you have experience with it or want to join or provide some support to this project, please contact us !!!
  • Some information about the WORD dataset is presented in the following:
Fig. 1. An example in the WORD dataset.
Fig. 2. Volume distribution or each organ in the WORD dataset.
Fig. 3. User study based on three junior oncologists independently, each of them comes from a different hospital.

DataSet

Please contact Xiangde (luoxd1996 AT gmail DOT com) for the dataset. Two steps are needed to download and access the dataset: 1) using your google email to apply for the download permission; 2) using your affiliation email to get the unzip password. We will get back to you after the paper is accepted. We just handle the real-name email and your email suffix must match your affiliation. The email should contain the following information:

Name/Homepage/Google Scholar: (Tell us who you are.)
Primary Affiliation: (The name of your institution or university, etc.)
Job Title: (E.g., Professor, Associate Professor, Ph.D., etc.)
Affiliation Email: (the password will be sent to this email, we just reply to the email which is the end of "edu".)
How to use: (Only for academic research, not for commercial use or second-development.)

In addition, this work is still ongoing, the WORD dataset will be extended to larger and more diverse (more patients, more organs, and more modalities, more clinical hospitals' data and MR Images will be considered to include future), any suggestion, comment, collaboration, and sponsor are welcome.

Acknowledgment and Statement

  • This dataset belongs to the Healthcare Intelligence Laboratory at University of Electronic Science and Technology of China and is licensed under the GNU General Public License v3.0.
  • This project has been approved by the privacy and ethical review committee. We thank all collaborators for the data collection, annotation, checking, and user study!
  • This project and dataset were designed for open-available academic research, not for clinical, commercial, second-development, or other use. In addition, if you used it for your academic research, you are encouraged to release the code and the pre-trained model.
  • The interesting and memorable name WORD is suggested by Dr. Jie-Neng, thanks a lot !!!

Citation

It would be highly appreciated if you cite our paper when using the WORD dataset or code:

@article{luo2021word,
  title={{WORD}: Revisiting Organs Segmentation in the Whole Abdominal Region},
  author={Luo, Xiangde and Liao, Wenjun and Xiao, Jianghong and Song, Tao and Zhang, Xiaofan and Li, Kang and Wang, Guotai and Zhang, Shaoting},
  journal={arXiv preprint arXiv:2111.02403},
  year={2021}
}
Owner
Healthcare Intelligence Laboratory
Healthcare Intelligence Laboratory
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022