WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

Overview

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet).

  • [New] Note that all the emails about the download permission of WORD will be handled after the paper is accepted, all information will be updated in time in this repo, please don't send them multiple times!!!
  • This repo provides the codebase and dataset of work WORD: Revisiting Organs Segmentation in the Whole Abdominal Region, and the download requirement will be approved after the paper is accepted, stay tuned !!!
  • Now, we are preparing an online evaluation server for the fair and open research if you have experience with it or want to join or provide some support to this project, please contact us !!!
  • Some information about the WORD dataset is presented in the following:
Fig. 1. An example in the WORD dataset.
Fig. 2. Volume distribution or each organ in the WORD dataset.
Fig. 3. User study based on three junior oncologists independently, each of them comes from a different hospital.

DataSet

Please contact Xiangde (luoxd1996 AT gmail DOT com) for the dataset. Two steps are needed to download and access the dataset: 1) using your google email to apply for the download permission; 2) using your affiliation email to get the unzip password. We will get back to you after the paper is accepted. We just handle the real-name email and your email suffix must match your affiliation. The email should contain the following information:

Name/Homepage/Google Scholar: (Tell us who you are.)
Primary Affiliation: (The name of your institution or university, etc.)
Job Title: (E.g., Professor, Associate Professor, Ph.D., etc.)
Affiliation Email: (the password will be sent to this email, we just reply to the email which is the end of "edu".)
How to use: (Only for academic research, not for commercial use or second-development.)

In addition, this work is still ongoing, the WORD dataset will be extended to larger and more diverse (more patients, more organs, and more modalities, more clinical hospitals' data and MR Images will be considered to include future), any suggestion, comment, collaboration, and sponsor are welcome.

Acknowledgment and Statement

  • This dataset belongs to the Healthcare Intelligence Laboratory at University of Electronic Science and Technology of China and is licensed under the GNU General Public License v3.0.
  • This project has been approved by the privacy and ethical review committee. We thank all collaborators for the data collection, annotation, checking, and user study!
  • This project and dataset were designed for open-available academic research, not for clinical, commercial, second-development, or other use. In addition, if you used it for your academic research, you are encouraged to release the code and the pre-trained model.
  • The interesting and memorable name WORD is suggested by Dr. Jie-Neng, thanks a lot !!!

Citation

It would be highly appreciated if you cite our paper when using the WORD dataset or code:

@article{luo2021word,
  title={{WORD}: Revisiting Organs Segmentation in the Whole Abdominal Region},
  author={Luo, Xiangde and Liao, Wenjun and Xiao, Jianghong and Song, Tao and Zhang, Xiaofan and Li, Kang and Wang, Guotai and Zhang, Shaoting},
  journal={arXiv preprint arXiv:2111.02403},
  year={2021}
}
Owner
Healthcare Intelligence Laboratory
Healthcare Intelligence Laboratory
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022