A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Related tags

Deep LearningADClust
Overview

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Overview

Clustering analysis is widely utilized in single-cell RNA-sequencing (scRNA-seq) data to discover cell heterogeneity and cell states. While several clustering methods have been developed for scRNA-seq analysis, the clustering results of these methods heavily rely on the number of clusters as prior information. How-ever, it is not easy to know the exact number of cell types, and experienced determination is not always accurate. Here, we have developed ADClust, an auto deep embedding clustering method for scRNA-seq data, which can simultaneously and accurately estimate the number of clusters and cluster cells. Specifically, ADClust first obtain low-dimensional representation through pre-trained autoencoder, and use the representations to cluster cells into micro-clusters. Then, the micro-clusters are compared in be-tween by Dip-test, a statistical test for unimodality, and similar micro-clusters are merged through a designed clustering loss func-tion. This process continues until convergence. By tested on elev-en real scRNA-seq datasets, ADClust outperformed existing meth-ods in terms of both clustering performance and the ability to es-timate the number of clusters. More importantly, our model pro-vides high speed and scalability on large datasets.

(Variational) gcn

Requirements

Please ensure that all the libraries below are successfully installed:

  • torch 1.7.1
  • numpy 1.19.2
  • scipy 1.7.3
  • scanpy 1.8.1

Installation

You need to compile the dip.c file using a C compiler, and add the path of generated library dip.so into LD_LIBRARY_PATH. For this following commands need to be executed:


gcc -fPIC -shared -o dip.so dip.c

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./dip.so

Run ADClust

Run on the normalized example data.


python ADClust.py --name Baron_human_normalized

output

The clustering cell labels will be stored in the dir ourtput /dataname_pred.csv.

scRNA-seq Datasets

All datasets can be downloaded at Here

All datasets will be downloaded to: ADClust /data/

Citation

Please cite our paper:


@article{zengys,
  title={A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data},
  author={Yuansong Zeng, Zhuoyi Wei, Fengqi, Zhong,  Zixiang Pan, Yutong Lu, Yuedong Yang},
  journal={biorxiv},
  year={2021}
 publisher={Cold Spring Harbor Laboratory}
}

Owner
AI-Biomed @NSCC-gz
AI-Biomed @NSCC-gz
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
yufan 81 Dec 08, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022