Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Overview

Wav2Vec2 STT Python

Beta Software

Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition.

Donate Donate Donate

Requirements:

  • Python 3.7+
  • Platform: Linux x64 (Windows is a work in progress; MacOS may work; PRs welcome)
  • Python package requirements: cffi, numpy
  • Wav2Vec2 2.0 Model (must be converted to compatible format)
    • Several are available ready-to-go on this project's releases page and below.
    • You can convert your own models by following the instructions here.

Models:

Model Download Size
Facebook Wav2Vec2 2.0 Base (960h) 360 MB
Facebook Wav2Vec2 2.0 Large (960h) 1.18 GB
Facebook Wav2Vec2 2.0 Large LV60 (960h) 1.18 GB
Facebook Wav2Vec2 2.0 Large LV60 Self (960h) 1.18 GB

Usage

from wav2vec2_stt import Wav2Vec2STT
decoder = Wav2Vec2STT('model_dir')

import wave
wav_file = wave.open('tests/test.wav', 'rb')
wav_samples = wav_file.readframes(wav_file.getnframes())

assert decoder.decode(wav_samples).strip().lower() == 'it depends on the context'

Also contains a simple CLI interface for recognizing wav files:

$ python -m wav2vec2_stt decode model test.wav
IT DEPENDS ON THE CONTEXT
$ python -m wav2vec2_stt decode model test.wav test.wav
IT DEPENDS ON THE CONTEXT
IT DEPENDS ON THE CONTEXT
$ python -m wav2vec2_stt -h
usage: python -m wav2vec2_stt [-h] {decode} ...

positional arguments:
  {decode}    sub-command
    decode    decode one or more WAV files

optional arguments:
  -h, --help  show this help message and exit

Installation/Building

Recommended installation via wheel from pip (requires a recent version of pip):

python -m pip install wav2vec2_stt

See setup.py for more details on building it yourself.

Author

License

This project is licensed under the GNU Affero General Public License v3 (AGPL-3.0-or-later). See the LICENSE file for details. If this license is problematic for you, please contact me.

Acknowledgments

  • Contains and uses code from PyTorch and torchaudio, licensed under the BSD 2-Clause License.
You might also like...
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช

TGCLOUD ๐Ÿช Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช Features Easy to Deploy Heroku Supp

Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR โ€ข Installation โ€ข Get Star

This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

โš ๏ธ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Comments
Owner
David Zurow
david.zurow at gmail
David Zurow
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

ๅผ ๅš 1 Feb 02, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloomโ€™s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
pyupbit ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ upbit์—์„œ ๋น„ํŠธ์ฝ”์ธ์„ ์ž๋™๋งค๋งคํ•˜๋Š” ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. ์กฐ์ฝ”๋”ฉ ์œ ํŠœ๋ธŒ ์ฑ„๋„์—์„œ ์ž์„ธํ•œ ๊ฐ•์˜ ์˜์ƒ์„ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํŒŒ์ด์ฌ ๋น„ํŠธ์ฝ”์ธ ํˆฌ์ž ์ž๋™ํ™” ๊ฐ•์˜ ์ฝ”๋“œ by ์œ ํŠœ๋ธŒ ์กฐ์ฝ”๋”ฉ ์ฑ„๋„ pyupbit ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ upbit ๊ฑฐ๋ž˜์†Œ์—์„œ ๋น„ํŠธ์ฝ”์ธ ์ž๋™๋งค๋งค๋ฅผ ํ•˜๋Š” ์ฝ”๋“œ์ž…๋‹ˆ๋‹ค. ํŒŒ์ผ ๊ตฌ์„ฑ test.py : ์ž”๊ณ  ์กฐํšŒ (1๊ฐ•) backtest.py : ๋ฐฑํ…Œ์ŠคํŒ… ์ฝ”๋“œ (2๊ฐ•) bestK.p

์กฐ์ฝ”๋”ฉ JoCoding 186 Dec 29, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis ไธญๆ–‡่ฏญๆณ•็บ ้”™็ ”็ฉถ ๅŸบไบŽๅบๅˆ—ๆ ‡ๆณจ็š„ๆ–นๆณ• ๆ‰€้œ€็Žฏๅขƒ Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 ็ฌ”่€…ไฝฟ็”จไบ†ๅผ€ๆบ็š„bert4keras

12 Nov 25, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
๐ŸŒ Translation microservice powered by AI

Dot Translate ๐ŸŒ A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022