GSoC'2021 | TensorFlow implementation of Wav2Vec2

Overview

GSoC

This repository presents an implementation of the Wav2Vec2 model [1] in TensorFlow 2.0 as a part of Google Summer of Code.

For a quick demo, please check out this. Final report of the project can be found here.

Notebooks

The repository comes with shiny Colab Notebooks. Below you can find a list of them. Spin them up and don't forget to have fun!

Notebook Description
Open In Colab This notebook gives you a template to fine-tune a pre-trained Wav2Vec2 SavedModel
Open In Colab This notebook demonstrates conversion of TF Wav2Vec2 model to ONNX and compares the latency of ONNX exported model & TF model on CPU
Open In Colab This notebook demonstrates Wav2Vec2 evaluation (without any padding) on LibriSpeech data
Open In Colab This notebook demonstrates Wav2Vec2 SavedModel evaluation (with constant padding upto 246000 length) on LibriSpeech data
Open In Colab This notebook shows a small demo of how to use Wav2Vec2 for inference for ASR task

Checkpoints

Below is a summary of checkpoints obtained during the project:

🤗 Hub Checkpoint TFHub SavedModel Description
gsoc-wav2vec2 wav2vec2 This checkpoint is TensorFlow's equivalent of pre-trained Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
gsoc-wav2vec2-960h wav2vec2-960h This checkpoint is TensorFlow's equivalent of fine-tuned Wav2Vec2 by Facebook. PyTorch weights are converted into TensorFlow using convert_torch_to_tf.py
finetuned-wav2vec2-960h - This checkpoint is obtained by fine-tuning Wav2Vec2 model on 960h of LibriSpeech dataset during my GSoC tenure. You can reproduce training by running main.py on TPU v3-8

To know more about the process of obtaining the first two checkpoints, please check out this section and to know about the process of obtaining the last checkpoint, please check out this section.

Using this Repository

Wav2Vec2 model from this repository can be installed using the pip command:

# this will install the wav2vec2 package
pip3 install git+https://github.com/vasudevgupta7/[email protected]

You can use the fine-tuned checkpoints (from 🤗 Hub) like this:

from wav2vec2 import Wav2Vec2ForCTC, Wav2Vec2Config

config = Wav2Vec2Config()
model = Wav2Vec2ForCTC(config)
# now use this model like any other TF model

# incase you are interested in already trained model, use `.from_pretrained` method
model_id = "finetuned-wav2vec2-960h"
model = Wav2Vec2ForCTC.from_pretrained(model_id)

Additionally, you can use the SavedModel from TFHub like this:

import tensorflow_hub as hub

model_url = "https://tfhub.dev/vasudevgupta7/wav2vec2-960h/1"
model = hub.KerasLayer(model_url)

# use this `model`, just like any other TF SavedModel

Please checkout the notebooks referred to in this repository for more information on how to use the Wav2Vec2 model.

Reproducing this project

Setting Up

# install & setup TensorFlow first
pip3 install tensorflow

# install other requirements of this project using the following command:
pip3 install -qr requirements.txt
sudo apt-get install libsndfile1-dev

# switch to code directory for further steps
cd src

For using TPUs, it's important to store model weights and datasets in the GCS bucket so that TPU can access them directly from there. Hence we will create 2 GCS buckets - one for checkpointing and the other for storing LibriSpeech tfrecords.

# these bucket names will be required to run the training script later
export DATA_BUCKET_NAME="gsoc-librispeech-us"
export CKPT_BUCKET_NAME="gsoc-checkpoints-us"

# create GCS buckets
gsutil mb gs://${DATA_BUCKET_NAME}
gsutil mb gs://${CKPT_BUCKET_NAME}

Preparing dataset

Now we will download the LibriSpeech dataset from the official website & convert them into tfrecords using make_tfrecords.py. Finally, we will export all the tfrecords to the GCS bucket.

# possible values are `dev-clean`, `train-clean-100`, `train-clean-360`, `train-other-500`, `test-clean`
# you will have to follow same steps for all the configurations (specified above).
export DATA_SPLIT=dev-clean

wget https://www.openslr.org/resources/12/${DATA_SPLIT}.tar.gz
tar -xf ${DATA_SPLIT}.tar.gz

python3 make_tfrecords.py --data_dir LibriSpeech/${DATA_SPLIT} -d ${DATA_SPLIT} -n 50

# transfer tfrecords to GCS bucket
gsutil cp -r ${DATA_SPLIT} gs://<DATA_BUCKET_NAME>/${DATA_SPLIT}

Now your GCS bucket (DATA_BUCKET_NAME) should look like this:

.
|- ${DATA_SPLIT}
    |- ${DATA_SPLIT}-0.tfrecord
    |- ${DATA_SPLIT}-1.tfrecord
    .
    .

Follow the above steps for all other data splits. You just need to change the DATA_SPLIT environment variable.

Model training

Now since everything is installed and GCS buckets are configured, we just need to run one command to initiate training.

Note: Following commands assumes that you have exported DATA_BUCKET_NAME & CKPT_BUCKET_NAME environment variables already.

The following command will fine-tune the wav2vec2 model on single/multiple GPUs or Colab/Kaggle TPUs:

python3 main.py

For training on Cloud TPUs, run the following command:

# export `TPU_NAME` environment variable first
# this flag will ensure that your VM connects to the specified TPUs & TPUs become visible to TensorFlow
TPU_NAME=<tpu-name> python3 main.py

Running Conversion script

Original PyTorch checkpoints (from Facebook) can be converted using the conversion script available in this repository.

python3 convert_torch_to_tf.py \
--hf_model_id facebook/wav2vec2-base \ # HuggingFace Hub ID of the model you want to convert
--with_lm_head # Whether to use `Wav2Vec2ForCTC` or `Wav2Vec2Model` from this repository

Running tests

# first install `torch` & `transformers`
pip3 install torch transformers

# run this from the root of this repository
pytest -sv tests

Acknowledgement

References

[1] Baevski, Alexei, et al. “Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations.” ArXiv:2006.11477 [Cs, Eess], Oct. 2020. arXiv.org, http://arxiv.org/abs/2006.11477.

End Notes

Please create an issue in case you encountered any issues while using this project. Don't forget to 🌟 this repository if you liked my work.

Owner
Vasudev Gupta
Open Source @huggingface, @tensorflow | Interested in Speech & Text
Vasudev Gupta
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022