Deep Learning for Natural Language Processing - Lectures 2021

Overview

Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

This online course is taught by Ivan Habernal and Mohsen Mesgar.

The slides are available as PDF as well as LaTeX source code (we've used Beamer because typesetting mathematics in PowerPoint or similar tools is painful)

Logo

The content is licenced under Creative Commons CC BY-SA 4.0 which means that you can re-use, adapt, modify, or publish it further, provided you keep the license and give proper credits.

Accompanying video lectures are linked on YouTube

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

  • Topics: Bilingual and Syntax-Based Word Embeddings
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Upadhyay, S., Faruqui, M., Dyer, C., & Roth, D. (2016). Cross-lingual Models of Word Embeddings: An Empirical Comparison. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1661–1670. https://doi.org/10.18653/v1/P16-1157

Lecture 6

  • Topics: Convolutional Neural Networks
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Madasu, A., & Anvesh Rao, V. (2019). Sequential Learning of Convolutional Features for Effective Text Classification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 5657–5666. https://doi.org/10.18653/v1/D19-1567

Lecture 7

Lecture 8

Lecture 9

  • Topics: Transformer architectures and BERT
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423

Lecture 10

Lecture 11

Compiling slides to PDF

If you run a linux distribution (e.g, Ubuntu 20.04 and newer), all packages are provided as part of texlive. Install the following packages

$ sudo apt-get install texlive-latex-recommended texlive-pictures texlive-latex-extra \
texlive-fonts-extra texlive-bibtex-extra texlive-humanities texlive-science \
texlive-luatex biber wget -y

Install Fira Sans fonts required by the beamer template locally

$ wget https://github.com/mozilla/Fira/archive/refs/tags/4.106.zip -O 4.106.zip \
&& unzip -o 4.106.zip && mkdir -p ~/.fonts/FiraSans && cp Fira-4.106/otf/Fira* \
~/.fonts/FiraSans/ && rm -rf Fira-4.106 && rm 4.106.zip && fc-cache -f -v && mktexlsr

Compile each lecture's slides using lualatex

$ lualatex dl4nlp2021-lecture*.tex && biber dl4nlp2021-lecture*.bcf && \
lualatex dl4nlp2021-lecture*.tex && lualatex dl4nlp2021-lecture*.tex

Compiling slides using Docker

If you don't run a linux system or don't want to mess up your latex packages, I've tested compiling the slides in a Docker.

Install Docker ( https://docs.docker.com/engine/install/ )

Create a folder to which you clone this repository (for example, $ mkdir -p /tmp/slides)

Run Docker with Ubuntu 20.04 interactively; mount your slides directory under /mnt in this Docker container

$ docker run -it --rm --mount type=bind,source=/tmp/slides,target=/mnt \
ubuntu:20.04 /bin/bash

Once the container is running, update, install packages and fonts as above

# apt-get update && apt-get dist-upgrade -y && apt-get install texlive-latex-recommended \
texlive-pictures texlive-latex-extra texlive-fonts-extra texlive-bibtex-extra \
texlive-humanities texlive-science texlive-luatex biber wget -y

Fonts

# wget https://github.com/mozilla/Fira/archive/refs/tags/4.106.zip -O 4.106.zip \
&& unzip -o 4.106.zip && mkdir -p ~/.fonts/FiraSans && cp Fira-4.106/otf/Fira* \
~/.fonts/FiraSans/ && rm -rf Fira-4.106 && rm 4.106.zip && fc-cache -f -v && mktexlsr

And compile

# cd /mnt/dl4nlp/latex/lecture01
# lualatex dl4nlp2021-lecture*.tex && biber dl4nlp2021-lecture*.bcf && \
lualatex dl4nlp2021-lecture*.tex && lualatex dl4nlp2021-lecture*.tex

which generates the PDF in your local folder (e.g, /tmp/slides).

PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022