Anonymize BLM Protest Images

Overview

Anonymize BLM Protest Images

This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Use our interface at blm.stanford.edu.

What's happened? Arrests at protests from public images

Over the past weeks, we have seen an increasing number of arrests at BLM protests, with images circulating around the web enabling automatic identification of those individuals and subsequent arrests to hamper protest activity. This primarily concerns social media protest images.

Numerous applications have emerged in response to this threat that aim to anonymize protest images and enable people to continue protesting in safety. Of course, this would require a shift on the public's part to recognize this issue and an easy and effective method for anonymization to surface. In an ideal world, platforms like Twitter would enable an on-platform solution.

So what's your goal? AI to help alleviate some of the worst parts of AI

The goal of this work is to leverage our group's knowledge of facial recognition AI to offer the most effective anonymization tool that evades the state of the art in facial recognition technology. AI facial recognition models can still recognize blurred faces. This work tries to discourage people from trying to recognize or reconstruct pixelated faces by masking people with an opaque mask. We use the BLM fist emoji as that mask for solidarity. While posting anonymized images does not delete the originals, we are starting with awareness and hope Twitter and other platforms would offer an on-platform solution (might be a tall order, but one can hope).

Importantly, this application does not save images. We hope the transparency of this repository will allow for community input. The Twitter bot posts anonymized images based on the Fair Use policy; however, if your image is used and you'd like it to be taken down, we will do our best to do so immediately.

Q&A

How can AI models still recognize blurred faces, even if they cannot reconstruct them perfectly? Recognition is different from reconstruction. Facial recognition technology can still identify many blurred faces and is better than humans at it. Reconstruction is a much more arduous task (see the difference between discriminative and generative models, if you're curious). Reconstruction has recently been exposed to be very biased (see lessons from PULSE). Blurring faces has the added threat of encouraging certain people or groups to de-anonymize images through reconstruction or directly identifying individuals through recognition.

Do you save my pre-anonymized images? No. The goal of this tool is to protect your privacy and saving the images would be antithetical to that. We don’t save any images you give us or any of the anonymized images created from the AI model (sometimes they’re not perfect, so saving them would still not be great!). If you like technical details: the image is passed into the AI model on the cloud, then the output is passed back and directly displayed in a base64 jpg on your screen.

The bot tweeted my image with the fists on it. Can you take it down? Yes, absolutely. Please DM the bot or reply directly.

Can you talk a bit more about your AI technical approach? We build on state-of-the-art crowd counting AI, because it offers huge advantages to anonymizing crowds over traditional facial recognition models. Traditional methods can only find a few (less than 20 or even less than 5) in a single image. Crowds of BLM protesters can number in the hundreds and thousands, and certainly around 50, in a single image. The model we use in this work has been trained on over 1.2 million people in the open-sourced research dataset, called QNRF, with crowds ranging from the few to the the thousands. False negatives are the worst error in our case. The pretrained model weights live in the LSC-CNN that we build on - precisely, it's in a Google Drive folder linked from their README.

Other amazing tools

We would love to showcase other parallel efforts (please propose any we have missed here!). Not only that, if this is not the tool for you, please check these tools out too:

And more...

Built by and built on

  1. This work is built by the Stanford Machine Learning Group. We are Krishna Patel, JQ, and Sharon Zhou.

  2. Flask-Postgres Template by @sharonzhou

https://github.com/sharonzhou/flask-postgres-template
  1. Image Uploader by @christianbayer
https://github.com/christianbayer/image-uploader
  1. LSC-CNN by @vlad3996
https://github.com/vlad3996/lsc-cnn

Paper associated with this work:

@article{LSCCNN20,
    Author = {Sam, Deepak Babu and Peri, Skand Vishwanath and Narayanan Sundararaman, Mukuntha,  and Kamath, Amogh and Babu, R. Venkatesh},
    Title = {Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection},
    Journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
    Year = {2020}
}

Offline mode

See the offline branch to run this work offline using Docker. This awesome code was contributed by @matthiaszimmermann.

Owner
Stanford Machine Learning Group
Our mission is to significantly improve people's lives through our work in AI
Stanford Machine Learning Group
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022