The repository offers the official implementation of our paper in PyTorch.

Related tags

Deep LearningCIT
Overview

Cloth Interactive Transformer (CIT)

Cloth Interactive Transformer for Virtual Try-On
Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Philip H.S. Torr5, Nicu Sebe16.
1University of Trento, Italy, 2Peng Cheng Laboratory, China, 3Peking University Shenzhen Graduate School, China,
4Inception Institute of AI, UAE, 5University of Oxford, UK, 6Huawei Research Ireland, Ireland.

The repository offers the official implementation of our paper in PyTorch. The code and pre-trained models are tested with pytorch 0.4.1, torchvision 0.2.1, opencv-python 4.1, and pillow 5.4 (Python 3.6).

In the meantime, check out our recent paper XingGAN and XingVTON.

Usage

This pipeline is a combination of consecutive training and testing of Cloth Interactive Transformer (CIT) Matching block based GMM and CIT Reasoning block based TOM. GMM generates the warped clothes according to the target human. Then, TOM blends the warped clothes outputs from GMM into the target human properties, to generate the final try-on output.

  1. Install the requirements
  2. Download/Prepare the dataset
  3. Train the CIT Matching block based GMM network
  4. Get warped clothes for training set with trained GMM network, and copy warped clothes & masks inside data/train directory
  5. Train the CIT Reasoning block based TOM network
  6. Test CIT Matching block based GMM for testing set
  7. Get warped clothes for testing set, copy warped clothes & masks inside data/test directory
  8. Test CIT Reasoning block based TOM testing set

Installation

This implementation is built and tested in PyTorch 0.4.1. Pytorch and torchvision are recommended to install with conda: conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch

For all packages, run pip install -r requirements.txt

Data Preparation

For training/testing VITON dataset, our full and processed dataset is available here: https://1drv.ms/u/s!Ai8t8GAHdzVUiQQYX0azYhqIDPP6?e=4cpFTI. After downloading, unzip to your own data directory ./data/.

Training

Run python train.py with your specific usage options for GMM and TOM stage.

For example, GMM: python train.py --name GMM --stage GMM --workers 4 --save_count 5000 --shuffle. Then run test.py for GMM network with the training dataset, which will generate the warped clothes and masks in "warp-cloth" and "warp-mask" folders inside the "result/GMM/train/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/train" folder.

Run TOM stage, python train.py --name TOM --stage TOM --workers 4 --save_count 5000 --shuffle

Evaluation

We adopt four evaluation metrics in our work for evaluating the performance of the proposed XingVTON. There are Jaccard score (JS), structral similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Inception score (IS).

Note that JS is used for the same clothing retry-on cases (with ground truth cases) in the first geometric matching stage, while SSIM and LPIPS are used for the same clothing retry-on cases (with ground truth cases) in the second try-on stage. In addition, IS is used for different clothing try-on (where no ground truth is available).

For JS

  • Step1: Runpython test.py --name GMM --stage GMM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/GMM_pretrained/gmm_final.pth then the parsed segmentation area for current upper clothing is used as the reference image, accompanied with generated warped clothing mask then:
  • Step2: Runpython metrics/getJS.py

For SSIM

After we run test.py for GMM network with the testibng dataset, the warped clothes and masks will be generated in "warp-cloth" and "warp-mask" folders inside the "result/GMM/test/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/test" folder. Then:

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth Then the original target human image is used as the reference image, accompanied with the generated retry-on image then:
  • Step2: Run python metrics/getSSIM.py

For LPIPS

  • Step1: You need to creat a new virtual enviriment, then install PyTorch 1.0+ and torchvision;
  • Step2: Run sh metrics/PerceptualSimilarity/testLPIPS.sh;

For IS

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth
  • Step2: Run python metrics/getIS.py

Inference

The pre-trained models are provided here. Download the pre-trained models and put them in this project (./checkpoints) Then just run the same step as Evaluation to test/inference our model.

Acknowledgements

This source code is inspired by CP-VTON, CP-VTON+. We are extremely grateful for their public implementation.

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

CIT

@article{ren2021cloth,
  title={Cloth Interactive Transformer for Virtual Try-On},
  author={Ren, Bin and Tang, Hao and Meng, Fanyang and Ding, Runwei and Shao, Ling and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2104.05519},
  year={2021}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Owner
Bingoren
Bingoren
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022